Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- Treasury
- Optimization enabled
- true
- Compiler version
- v0.8.19+commit.7dd6d404
- Optimization runs
- 1000
- EVM Version
- paris
- Verified at
- 2024-06-28T02:51:33.671883Z
Constructor Arguments
0x000000000000000000000000049ca0046c4d6f86cc38c8c3e602c69d618f7a5e
Arg [0] (address) : 0x049ca0046c4d6f86cc38c8c3e602c69d618f7a5e
src/Treasury.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity =0.8.19; import "solady/src/auth/Ownable.sol"; import "solady/src/utils/SafeTransferLib.sol"; import "weighted-math-lib/WeightedMathLib.sol"; contract Treasury is Ownable { /// ----------------------------------------------------------------------- /// Dependencies /// ----------------------------------------------------------------------- using FixedPointMathLib for *; using SafeTransferLib for address; /// ----------------------------------------------------------------------- /// Events /// ----------------------------------------------------------------------- /// @dev Emitted when the fee recipient is updated. /// @param recipient The new fee recipient address. /// @param percentage The new fee recipient percentage. event FeeRecipientUpdated(address recipient, uint256 percentage); /// ----------------------------------------------------------------------- /// Custom Errors /// ----------------------------------------------------------------------- /// @dev Error thrown when the input lenght is not same for recipients and percentages. error InvalidInput(); /// @dev Error thrown when the percentage sum is not 100. error InvalidPercentageSum(); /// @dev Error thrown when the address is 0x. error ZeroAddress(); /// ----------------------------------------------------------------------- /// Mutable Storage /// ----------------------------------------------------------------------- /// @notice Mapping to track fee percentage for each address. mapping(address => uint256) private feePercents; /// @notice List of addresses of fee recipients. address[] private recipients; /// @notice Address of asset swap fee recipient. address private assetSwapFeeRecipient; /// @notice Address of share swap fee recipient. address private shareSwapFeeRecipient; /// ----------------------------------------------------------------------- /// Constructor /// ----------------------------------------------------------------------- /// @param _owner The owner of the factory contract. constructor(address _owner) { // Initialize the owner and implementation address. _initializeOwner(_owner); // Set the initial recipientes here. recipients.push(_owner); feePercents[_owner] = 1 ether; assetSwapFeeRecipient = _owner; shareSwapFeeRecipient = _owner; } /** * @notice Update fee recipients and percentages. * @param _recipients List of addresses to be added as fee recipients. */ function updateRecipients( address[] calldata _recipients, uint256[] calldata _percentages ) public onlyOwner { if (_recipients.length != _percentages.length) revert InvalidInput(); delete recipients; uint256 totalPercentage; for (uint256 i = 0; i < _recipients.length;) { if (_recipients[i] == address(0)) revert ZeroAddress(); recipients.push(_recipients[i]); feePercents[_recipients[i]] = _percentages[i]; totalPercentage += _percentages[i]; emit FeeRecipientUpdated(_recipients[i], _percentages[i]); unchecked { ++i; } } if (totalPercentage != 1 ether) revert InvalidPercentageSum(); } function updateAssetSwapFeeRecipient(address _asfr) public onlyOwner { if (_asfr == address(0)) revert ZeroAddress(); assetSwapFeeRecipient = _asfr; emit FeeRecipientUpdated(_asfr, 0); } function updateShareSwapFeeRecipient(address _ssfr) public onlyOwner { if (_ssfr == address(0)) revert ZeroAddress(); shareSwapFeeRecipient = _ssfr; emit FeeRecipientUpdated(_ssfr, 0); } /** * @notice Distriburte the fee to the recipients. * @param asset Address of the asset that will be distrubuted. * @param amount Total amount of fees that will be distributed. */ function distributeFee( address asset, uint256 amount, uint256 swapFeesAsset, address share, uint256 swapFeesShare ) external { for (uint256 i = 0; i < recipients.length;) { uint256 feeP = feePercents[recipients[i]]; uint256 feeShare = amount.mulWad(feeP); asset.safeTransfer(recipients[i], feeShare); unchecked { ++i; } } if (swapFeesShare > 0) { share.safeTransfer(shareSwapFeeRecipient, swapFeesShare); } if (swapFeesAsset > 0) { asset.safeTransfer(assetSwapFeeRecipient, swapFeesAsset); } } }
lib/solady/src/auth/Ownable.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple single owner authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol) /// /// @dev Note: /// This implementation does NOT auto-initialize the owner to `msg.sender`. /// You MUST call the `_initializeOwner` in the constructor / initializer. /// /// While the ownable portion follows /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility, /// the nomenclature for the 2-step ownership handover may be unique to this codebase. abstract contract Ownable { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The caller is not authorized to call the function. error Unauthorized(); /// @dev The `newOwner` cannot be the zero address. error NewOwnerIsZeroAddress(); /// @dev The `pendingOwner` does not have a valid handover request. error NoHandoverRequest(); /// @dev Cannot double-initialize. error AlreadyInitialized(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ownership is transferred from `oldOwner` to `newOwner`. /// This event is intentionally kept the same as OpenZeppelin's Ownable to be /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173), /// despite it not being as lightweight as a single argument event. event OwnershipTransferred(address indexed oldOwner, address indexed newOwner); /// @dev An ownership handover to `pendingOwner` has been requested. event OwnershipHandoverRequested(address indexed pendingOwner); /// @dev The ownership handover to `pendingOwner` has been canceled. event OwnershipHandoverCanceled(address indexed pendingOwner); /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`. uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE = 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0; /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE = 0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d; /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE = 0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The owner slot is given by: /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`. /// It is intentionally chosen to be a high value /// to avoid collision with lower slots. /// The choice of manual storage layout is to enable compatibility /// with both regular and upgradeable contracts. bytes32 internal constant _OWNER_SLOT = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927; /// The ownership handover slot of `newOwner` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED)) /// let handoverSlot := keccak256(0x00, 0x20) /// ``` /// It stores the expiry timestamp of the two-step ownership handover. uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Override to return true to make `_initializeOwner` prevent double-initialization. function _guardInitializeOwner() internal pure virtual returns (bool guard) {} /// @dev Initializes the owner directly without authorization guard. /// This function must be called upon initialization, /// regardless of whether the contract is upgradeable or not. /// This is to enable generalization to both regular and upgradeable contracts, /// and to save gas in case the initial owner is not the caller. /// For performance reasons, this function will not check if there /// is an existing owner. function _initializeOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT if sload(ownerSlot) { mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`. revert(0x1c, 0x04) } // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } else { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(_OWNER_SLOT, newOwner) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } } /// @dev Sets the owner directly without authorization guard. function _setOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) } } else { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, newOwner) } } } /// @dev Throws if the sender is not the owner. function _checkOwner() internal view virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner, revert. if iszero(eq(caller(), sload(_OWNER_SLOT))) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } /// @dev Returns how long a two-step ownership handover is valid for in seconds. /// Override to return a different value if needed. /// Made internal to conserve bytecode. Wrap it in a public function if needed. function _ownershipHandoverValidFor() internal view virtual returns (uint64) { return 48 * 3600; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Allows the owner to transfer the ownership to `newOwner`. function transferOwnership(address newOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { if iszero(shl(96, newOwner)) { mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`. revert(0x1c, 0x04) } } _setOwner(newOwner); } /// @dev Allows the owner to renounce their ownership. function renounceOwnership() public payable virtual onlyOwner { _setOwner(address(0)); } /// @dev Request a two-step ownership handover to the caller. /// The request will automatically expire in 48 hours (172800 seconds) by default. function requestOwnershipHandover() public payable virtual { unchecked { uint256 expires = block.timestamp + _ownershipHandoverValidFor(); /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to `expires`. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), expires) // Emit the {OwnershipHandoverRequested} event. log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller()) } } } /// @dev Cancels the two-step ownership handover to the caller, if any. function cancelOwnershipHandover() public payable virtual { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), 0) // Emit the {OwnershipHandoverCanceled} event. log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller()) } } /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`. /// Reverts if there is no existing ownership handover requested by `pendingOwner`. function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) let handoverSlot := keccak256(0x0c, 0x20) // If the handover does not exist, or has expired. if gt(timestamp(), sload(handoverSlot)) { mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`. revert(0x1c, 0x04) } // Set the handover slot to 0. sstore(handoverSlot, 0) } _setOwner(pendingOwner); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the owner of the contract. function owner() public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { result := sload(_OWNER_SLOT) } } /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`. function ownershipHandoverExpiresAt(address pendingOwner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the handover slot. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) // Load the handover slot. result := sload(keccak256(0x0c, 0x20)) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Marks a function as only callable by the owner. modifier onlyOwner() virtual { _checkOwner(); _; } }
lib/solady/src/utils/FixedPointMathLib.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The mantissa is too big to fit. error MantissaOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, due to an multiplication overflow. error SMulWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error SDivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The input outside the acceptable domain. error OutOfDomain(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down. function sMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`. if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) { mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks. function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function sDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, WAD) // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`. if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) { mstore(0x00, 0x5c43740d) // `SDivWadFailed()`. revert(0x1c, 0x04) } z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks. function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is less than 0.5 we return zero. // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`. if (x <= -41446531673892822313) return r; /// @solidity memory-safe-assembly assembly { // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96` // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // `k` is in the range `[-61, 195]`. // Evaluate using a (6, 7)-term rational approximation. // `p` is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already `2**96` too large. r := sdiv(p, q) } // r should be in the range `(0.09, 0.25) * 2**96`. // We now need to multiply r by: // - The scale factor `s ≈ 6.031367120`. // - The `2**k` factor from the range reduction. // - The `1e18 / 2**96` factor for base conversion. // We do this all at once, with an intermediate result in `2**213` // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function lnWad(int256 x) internal pure returns (int256 r) { /// @solidity memory-safe-assembly assembly { // We want to convert `x` from `10**18` fixed point to `2**96` fixed point. // We do this by multiplying by `2**96 / 10**18`. But since // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here // and add `ln(2**96 / 10**18)` at the end. // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`. r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // We place the check here for more optimal stack operations. if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } // forgefmt: disable-next-item r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x := shr(159, shl(r, x)) // Evaluate using a (8, 8)-term rational approximation. // `p` is made monic, we will multiply by a scale factor later. // forgefmt: disable-next-item let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir. sar(96, mul(add(43456485725739037958740375743393, sar(96, mul(add(24828157081833163892658089445524, sar(96, mul(add(3273285459638523848632254066296, x), x))), x))), x)), 11111509109440967052023855526967) p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857) p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526) p := sub(mul(p, x), shl(96, 795164235651350426258249787498)) // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. // `q` is monic by convention. let q := add(5573035233440673466300451813936, x) q := add(71694874799317883764090561454958, sar(96, mul(x, q))) q := add(283447036172924575727196451306956, sar(96, mul(x, q))) q := add(401686690394027663651624208769553, sar(96, mul(x, q))) q := add(204048457590392012362485061816622, sar(96, mul(x, q))) q := add(31853899698501571402653359427138, sar(96, mul(x, q))) q := add(909429971244387300277376558375, sar(96, mul(x, q))) // `p / q` is in the range `(0, 0.125) * 2**96`. // Finalization, we need to: // - Multiply by the scale factor `s = 5.549…`. // - Add `ln(2**96 / 10**18)`. // - Add `k * ln(2)`. // - Multiply by `10**18 / 2**96 = 5**18 >> 78`. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already `2**96` too large. p := sdiv(p, q) // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`. p := mul(1677202110996718588342820967067443963516166, p) // Add `ln(2) * k * 5**18 * 2**192`. // forgefmt: disable-next-item p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p) // Add `ln(2**96 / 10**18) * 5**18 * 2**192`. p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p) // Base conversion: mul `2**18 / 2**192`. r := sar(174, p) } } /// @dev Returns `W_0(x)`, denominated in `WAD`. /// See: https://en.wikipedia.org/wiki/Lambert_W_function /// a.k.a. Product log function. This is an approximation of the principal branch. function lambertW0Wad(int256 x) internal pure returns (int256 w) { // forgefmt: disable-next-item unchecked { if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`. int256 wad = int256(WAD); int256 p = x; uint256 c; // Whether we need to avoid catastrophic cancellation. uint256 i = 4; // Number of iterations. if (w <= 0x1ffffffffffff) { if (-0x4000000000000 <= w) { i = 1; // Inputs near zero only take one step to converge. } else if (w <= -0x3ffffffffffffff) { i = 32; // Inputs near `-1/e` take very long to converge. } } else if (w >> 63 == 0) { /// @solidity memory-safe-assembly assembly { // Inline log2 for more performance, since the range is small. let v := shr(49, w) let l := shl(3, lt(0xff, v)) l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)), 49) w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13)) c := gt(l, 60) i := add(2, add(gt(l, 53), c)) } } else { int256 ll = lnWad(w = lnWad(w)); /// @solidity memory-safe-assembly assembly { // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`. w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll)) i := add(3, iszero(shr(68, x))) c := iszero(shr(143, x)) } if (c == 0) { do { // If `x` is big, use Newton's so that intermediate values won't overflow. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := mul(w, div(e, wad)) w := sub(w, sdiv(sub(t, x), div(add(e, t), wad))) } if (p <= w) break; p = w; } while (--i != 0); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } return w; } } do { // Otherwise, use Halley's for faster convergence. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := add(w, wad) let s := sub(mul(w, e), mul(x, wad)) w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t))))) } if (p <= w) break; p = w; } while (--i != c); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation. if (c != 0) { int256 t = w | 1; /// @solidity memory-safe-assembly assembly { x := sdiv(mul(x, wad), t) } x = (t * (wad + lnWad(x))); /// @solidity memory-safe-assembly assembly { w := sdiv(x, add(wad, t)) } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Calculates `floor(x * y / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Least significant 256 bits of the product. result := mul(x, y) // Temporarily use `result` as `p0` to save gas. let mm := mulmod(x, y, not(0)) // Most significant 256 bits of the product. let p1 := sub(mm, add(result, lt(mm, result))) // Handle non-overflow cases, 256 by 256 division. if iszero(p1) { if iszero(d) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } result := div(result, d) break } // Make sure the result is less than `2**256`. Also prevents `d == 0`. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. // Compute remainder using mulmod. let r := mulmod(x, y, d) // `t` is the least significant bit of `d`. // Always greater or equal to 1. let t := and(d, sub(0, d)) // Divide `d` by `t`, which is a power of two. d := div(d, t) // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(2, mul(3, d)) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 result := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or( mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t) ), // inverse mod 2**256 mul(inv, sub(2, mul(d, inv))) ) break } } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { result = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { result := add(result, 1) if iszero(result) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d)) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if iszero(iszero(x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 9; if (x <= type(uint256).max / 10 ** 36 - 1) { x *= 10 ** 18; z = 1; } z *= sqrt(x); } } /// @dev Returns the cube root of `x`, denominated in `WAD`. function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 12; if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) { if (x >= type(uint256).max / 10 ** 36) { x *= 10 ** 18; z = 10 ** 6; } else { x *= 10 ** 36; z = 1; } } z *= cbrt(x); } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`. /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent). function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) { /// @solidity memory-safe-assembly assembly { mantissa := x if mantissa { if iszero(mod(mantissa, 1000000000000000000000000000000000)) { mantissa := div(mantissa, 1000000000000000000000000000000000) exponent := 33 } if iszero(mod(mantissa, 10000000000000000000)) { mantissa := div(mantissa, 10000000000000000000) exponent := add(exponent, 19) } if iszero(mod(mantissa, 1000000000000)) { mantissa := div(mantissa, 1000000000000) exponent := add(exponent, 12) } if iszero(mod(mantissa, 1000000)) { mantissa := div(mantissa, 1000000) exponent := add(exponent, 6) } if iszero(mod(mantissa, 10000)) { mantissa := div(mantissa, 10000) exponent := add(exponent, 4) } if iszero(mod(mantissa, 100)) { mantissa := div(mantissa, 100) exponent := add(exponent, 2) } if iszero(mod(mantissa, 10)) { mantissa := div(mantissa, 10) exponent := add(exponent, 1) } } } } /// @dev Convenience function for packing `x` into a smaller number using `sci`. /// The `mantissa` will be in bits [7..255] (the upper 249 bits). /// The `exponent` will be in bits [0..6] (the lower 7 bits). /// Use `SafeCastLib` to safely ensure that the `packed` number is small /// enough to fit in the desired unsigned integer type: /// ``` /// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether)); /// ``` function packSci(uint256 x) internal pure returns (uint256 packed) { (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`. /// @solidity memory-safe-assembly assembly { if shr(249, x) { mstore(0x00, 0xce30380c) // `MantissaOverflow()`. revert(0x1c, 0x04) } packed := or(shl(7, x), packed) } } /// @dev Convenience function for unpacking a packed number from `packSci`. function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) { unchecked { unpacked = (packed >> 7) * 10 ** (packed & 0x7f); } } /// @dev Returns the average of `x` and `y`. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (((x & 1) + (y & 1)) >> 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(sub(0, shr(255, x)), add(sub(0, shr(255, x)), x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
lib/solady/src/utils/SafeCastLib.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe integer casting library that reverts on overflow. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol) library SafeCastLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ error Overflow(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* UNSIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toUint8(uint256 x) internal pure returns (uint8) { if (x >= 1 << 8) _revertOverflow(); return uint8(x); } function toUint16(uint256 x) internal pure returns (uint16) { if (x >= 1 << 16) _revertOverflow(); return uint16(x); } function toUint24(uint256 x) internal pure returns (uint24) { if (x >= 1 << 24) _revertOverflow(); return uint24(x); } function toUint32(uint256 x) internal pure returns (uint32) { if (x >= 1 << 32) _revertOverflow(); return uint32(x); } function toUint40(uint256 x) internal pure returns (uint40) { if (x >= 1 << 40) _revertOverflow(); return uint40(x); } function toUint48(uint256 x) internal pure returns (uint48) { if (x >= 1 << 48) _revertOverflow(); return uint48(x); } function toUint56(uint256 x) internal pure returns (uint56) { if (x >= 1 << 56) _revertOverflow(); return uint56(x); } function toUint64(uint256 x) internal pure returns (uint64) { if (x >= 1 << 64) _revertOverflow(); return uint64(x); } function toUint72(uint256 x) internal pure returns (uint72) { if (x >= 1 << 72) _revertOverflow(); return uint72(x); } function toUint80(uint256 x) internal pure returns (uint80) { if (x >= 1 << 80) _revertOverflow(); return uint80(x); } function toUint88(uint256 x) internal pure returns (uint88) { if (x >= 1 << 88) _revertOverflow(); return uint88(x); } function toUint96(uint256 x) internal pure returns (uint96) { if (x >= 1 << 96) _revertOverflow(); return uint96(x); } function toUint104(uint256 x) internal pure returns (uint104) { if (x >= 1 << 104) _revertOverflow(); return uint104(x); } function toUint112(uint256 x) internal pure returns (uint112) { if (x >= 1 << 112) _revertOverflow(); return uint112(x); } function toUint120(uint256 x) internal pure returns (uint120) { if (x >= 1 << 120) _revertOverflow(); return uint120(x); } function toUint128(uint256 x) internal pure returns (uint128) { if (x >= 1 << 128) _revertOverflow(); return uint128(x); } function toUint136(uint256 x) internal pure returns (uint136) { if (x >= 1 << 136) _revertOverflow(); return uint136(x); } function toUint144(uint256 x) internal pure returns (uint144) { if (x >= 1 << 144) _revertOverflow(); return uint144(x); } function toUint152(uint256 x) internal pure returns (uint152) { if (x >= 1 << 152) _revertOverflow(); return uint152(x); } function toUint160(uint256 x) internal pure returns (uint160) { if (x >= 1 << 160) _revertOverflow(); return uint160(x); } function toUint168(uint256 x) internal pure returns (uint168) { if (x >= 1 << 168) _revertOverflow(); return uint168(x); } function toUint176(uint256 x) internal pure returns (uint176) { if (x >= 1 << 176) _revertOverflow(); return uint176(x); } function toUint184(uint256 x) internal pure returns (uint184) { if (x >= 1 << 184) _revertOverflow(); return uint184(x); } function toUint192(uint256 x) internal pure returns (uint192) { if (x >= 1 << 192) _revertOverflow(); return uint192(x); } function toUint200(uint256 x) internal pure returns (uint200) { if (x >= 1 << 200) _revertOverflow(); return uint200(x); } function toUint208(uint256 x) internal pure returns (uint208) { if (x >= 1 << 208) _revertOverflow(); return uint208(x); } function toUint216(uint256 x) internal pure returns (uint216) { if (x >= 1 << 216) _revertOverflow(); return uint216(x); } function toUint224(uint256 x) internal pure returns (uint224) { if (x >= 1 << 224) _revertOverflow(); return uint224(x); } function toUint232(uint256 x) internal pure returns (uint232) { if (x >= 1 << 232) _revertOverflow(); return uint232(x); } function toUint240(uint256 x) internal pure returns (uint240) { if (x >= 1 << 240) _revertOverflow(); return uint240(x); } function toUint248(uint256 x) internal pure returns (uint248) { if (x >= 1 << 248) _revertOverflow(); return uint248(x); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toInt8(int256 x) internal pure returns (int8) { int8 y = int8(x); if (x != y) _revertOverflow(); return y; } function toInt16(int256 x) internal pure returns (int16) { int16 y = int16(x); if (x != y) _revertOverflow(); return y; } function toInt24(int256 x) internal pure returns (int24) { int24 y = int24(x); if (x != y) _revertOverflow(); return y; } function toInt32(int256 x) internal pure returns (int32) { int32 y = int32(x); if (x != y) _revertOverflow(); return y; } function toInt40(int256 x) internal pure returns (int40) { int40 y = int40(x); if (x != y) _revertOverflow(); return y; } function toInt48(int256 x) internal pure returns (int48) { int48 y = int48(x); if (x != y) _revertOverflow(); return y; } function toInt56(int256 x) internal pure returns (int56) { int56 y = int56(x); if (x != y) _revertOverflow(); return y; } function toInt64(int256 x) internal pure returns (int64) { int64 y = int64(x); if (x != y) _revertOverflow(); return y; } function toInt72(int256 x) internal pure returns (int72) { int72 y = int72(x); if (x != y) _revertOverflow(); return y; } function toInt80(int256 x) internal pure returns (int80) { int80 y = int80(x); if (x != y) _revertOverflow(); return y; } function toInt88(int256 x) internal pure returns (int88) { int88 y = int88(x); if (x != y) _revertOverflow(); return y; } function toInt96(int256 x) internal pure returns (int96) { int96 y = int96(x); if (x != y) _revertOverflow(); return y; } function toInt104(int256 x) internal pure returns (int104) { int104 y = int104(x); if (x != y) _revertOverflow(); return y; } function toInt112(int256 x) internal pure returns (int112) { int112 y = int112(x); if (x != y) _revertOverflow(); return y; } function toInt120(int256 x) internal pure returns (int120) { int120 y = int120(x); if (x != y) _revertOverflow(); return y; } function toInt128(int256 x) internal pure returns (int128) { int128 y = int128(x); if (x != y) _revertOverflow(); return y; } function toInt136(int256 x) internal pure returns (int136) { int136 y = int136(x); if (x != y) _revertOverflow(); return y; } function toInt144(int256 x) internal pure returns (int144) { int144 y = int144(x); if (x != y) _revertOverflow(); return y; } function toInt152(int256 x) internal pure returns (int152) { int152 y = int152(x); if (x != y) _revertOverflow(); return y; } function toInt160(int256 x) internal pure returns (int160) { int160 y = int160(x); if (x != y) _revertOverflow(); return y; } function toInt168(int256 x) internal pure returns (int168) { int168 y = int168(x); if (x != y) _revertOverflow(); return y; } function toInt176(int256 x) internal pure returns (int176) { int176 y = int176(x); if (x != y) _revertOverflow(); return y; } function toInt184(int256 x) internal pure returns (int184) { int184 y = int184(x); if (x != y) _revertOverflow(); return y; } function toInt192(int256 x) internal pure returns (int192) { int192 y = int192(x); if (x != y) _revertOverflow(); return y; } function toInt200(int256 x) internal pure returns (int200) { int200 y = int200(x); if (x != y) _revertOverflow(); return y; } function toInt208(int256 x) internal pure returns (int208) { int208 y = int208(x); if (x != y) _revertOverflow(); return y; } function toInt216(int256 x) internal pure returns (int216) { int216 y = int216(x); if (x != y) _revertOverflow(); return y; } function toInt224(int256 x) internal pure returns (int224) { int224 y = int224(x); if (x != y) _revertOverflow(); return y; } function toInt232(int256 x) internal pure returns (int232) { int232 y = int232(x); if (x != y) _revertOverflow(); return y; } function toInt240(int256 x) internal pure returns (int240) { int240 y = int240(x); if (x != y) _revertOverflow(); return y; } function toInt248(int256 x) internal pure returns (int248) { int248 y = int248(x); if (x != y) _revertOverflow(); return y; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* OTHER SAFE CASTING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function toInt256(uint256 x) internal pure returns (int256) { if (x >= 1 << 255) _revertOverflow(); return int256(x); } function toUint256(int256 x) internal pure returns (uint256) { if (x < 0) _revertOverflow(); return uint256(x); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ function _revertOverflow() private pure { /// @solidity memory-safe-assembly assembly { // Store the function selector of `Overflow()`. mstore(0x00, 0x35278d12) // Revert with (offset, size). revert(0x1c, 0x04) } } }
lib/solady/src/utils/SafeTransferLib.sol
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// /// @dev Note: /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection. /// - For ERC20s, this implementation won't check that a token has code, /// responsibility is delegated to the caller. library SafeTransferLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /// @dev The ERC20 `transferFrom` has failed. error TransferFromFailed(); /// @dev The ERC20 `transfer` has failed. error TransferFailed(); /// @dev The ERC20 `approve` has failed. error ApproveFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes. uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300; /// @dev Suggested gas stipend for contract receiving ETH to perform a few /// storage reads and writes, but low enough to prevent griefing. uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ETH OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants. // // The regular variants: // - Forwards all remaining gas to the target. // - Reverts if the target reverts. // - Reverts if the current contract has insufficient balance. // // The force variants: // - Forwards with an optional gas stipend // (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases). // - If the target reverts, or if the gas stipend is exhausted, // creates a temporary contract to force send the ETH via `SELFDESTRUCT`. // Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758. // - Reverts if the current contract has insufficient balance. // // The try variants: // - Forwards with a mandatory gas stipend. // - Instead of reverting, returns whether the transfer succeeded. /// @dev Sends `amount` (in wei) ETH to `to`. function safeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Sends all the ETH in the current contract to `to`. function safeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // Transfer all the ETH and check if it succeeded or not. if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`. function forceSafeTransferAllETH(address to, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00) } } /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`. function trySafeTransferAllETH(address to, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for /// the current contract to manage. function safeTransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends all of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have their entire balance approved for /// the current contract to manage. function safeTransferAllFrom(address token, address from, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`. amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransfer(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sends all of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransferAll(address token, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`. mstore(0x20, address()) // Store the address of the current contract. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x14, to) // Store the `to` argument. amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// Reverts upon failure. function safeApprove(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// If the initial attempt to approve fails, attempts to reset the approved amount to zero, /// then retries the approval again (some tokens, e.g. USDT, requires this). /// Reverts upon failure. function safeApproveWithRetry(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, retrying upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x34, 0) // Store 0 for the `amount`. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval. mstore(0x34, amount) // Store back the original `amount`. // Retry the approval, reverting upon failure. if iszero( and( or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Returns the amount of ERC20 `token` owned by `account`. /// Returns zero if the `token` does not exist. function balanceOf(address token, address account) internal view returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x14, account) // Store the `account` argument. mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`. amount := mul( mload(0x20), and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20) ) ) } } }
lib/weighted-math-lib/src/WeightedMathLib.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.19; import "solady/src/utils/FixedPointMathLib.sol"; import "solady/src/utils/SafeCastLib.sol"; library WeightedMathLib { /// ----------------------------------------------------------------------- /// Dependencies /// ----------------------------------------------------------------------- using SafeCastLib for *; using FixedPointMathLib for *; /// ----------------------------------------------------------------------- /// Errors /// ----------------------------------------------------------------------- /// @dev Thrown when `amountIn` exceeds `MAX_PERCENTAGE_IN`, which is imposed by balancer. error AmountInTooLarge(); /// @dev Thrown when `amountOut` exceeds `MAX_PERCENTAGE_OUT`, which is imposed by balancer. error AmountOutTooLarge(); /// ----------------------------------------------------------------------- /// Constants /// ----------------------------------------------------------------------- /// @dev Maximum relative error allowed for fixed-point math operations (10^(-14)). uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; /// @dev Maximum percentage of reserveIn allowed to be swapped in when using `getAmountOut` (30%). uint256 internal constant MAX_PERCENTAGE_IN = 0.3 ether; /// @dev Maximum percentage of reserveOut allowed to be swapped out when using `getAmountIn` (30%). uint256 internal constant MAX_PERCENTAGE_OUT = 0.3 ether; /// ----------------------------------------------------------------------- /// Weighted Arithmetic /// ----------------------------------------------------------------------- /// @notice Calculate the spot price given reserves and weights of two assets in a pool. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getSpotPrice( uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256) { // ----------------------------------------------------------------------- // (reserveIn / weightIn) / (reserveOut / weightOut) // ----------------------------------------------------------------------- return reserveIn.divWad(weightIn).divWad(reserveOut.divWad(weightOut)); } /// @notice Calculate the invariant of a weighted pool given reserves and weights of the assets. /// @param reserves An array of reserves for all the assets in the pool. /// @param weights An array of weights for all the assets in the pool. function getInvariant(uint256[] memory reserves, uint256[] memory weights) internal pure returns (uint256 invariant) { // ----------------------------------------------------------------------- // ____ // ⎟⎟ weight // ⎟⎟ reserve ^ = i // n = totalAssets // ----------------------------------------------------------------------- invariant = 1e18; uint256 n = weights.length; for (uint256 i; i < n; i = i.rawAdd(1)) { invariant = invariant.mulWad(int256(reserves[i]).powWad(int256(weights[i])).toUint256()); } } /// @notice Calculate the invariant of a weighted pool given two reserves and weights. /// @dev Optimized for pools that contain exactly two assets. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getInvariant( uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256 invariant) { // ----------------------------------------------------------------------- // ____ // ⎟⎟ weight // ⎟⎟ reserve ^ = i // n = 2 // ----------------------------------------------------------------------- invariant = 1e18.mulWad(powWad(reserveIn, weightIn)).mulWad(powWad(reserveOut, weightOut)); } /// @notice Calculate the amount of input asset required to get a specific amount of output asset from the pool. /// @param amountOut The desired amount of output asset. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getAmountIn( uint256 amountOut, uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256) { unchecked { // ----------------------------------------------------------------------- // // ⎛ ⎛weightIn ⎞ ⎞ // ⎜ ───────── ⎟ // ⎜ ⎝weightOut⎠ ⎟ // ⎜⎛ reserveOut ⎞ ⎟ // reserveIn ⋅ ───────────────────── - 1 // ⎝⎝reserveOut - amountIn⎠ ⎠ // ----------------------------------------------------------------------- // Assert `amountOut` cannot exceed `MAX_PERCENTAGE_OUT`. if (amountOut > reserveOut.mulWad(MAX_PERCENTAGE_OUT)) { revert AmountOutTooLarge(); } // `MAX_PERCENTAGE_OUT` check ensures `amountOut` is always less than `reserveOut`. return reserveIn.mulWadUp( powWadUp( reserveOut.divWadUp(reserveOut.rawSub(amountOut)), weightOut.divWadUp(weightIn) ) - 1 ether ); } } /// @notice Calculate the amount of output asset received by providing a specific amount of input asset to the pool. /// @param amountIn The amount of input asset provided. /// @param reserveIn The reserve of the input asset in the pool. /// @param reserveOut The reserve of the output asset in the pool. /// @param weightIn The weight of the input asset in the pool. /// @param weightOut The weight of the output asset in the pool. function getAmountOut( uint256 amountIn, uint256 reserveIn, uint256 reserveOut, uint256 weightIn, uint256 weightOut ) internal pure returns (uint256) { // ----------------------------------------------------------------------- // // ⎛ ⎛weightIn ⎞⎞ // ⎜ ───────── ⎟ // ⎜ ⎝weightOut⎠⎟ // ⎜ ⎛ reserveIn ⎞ ⎟ // reserveOut ⋅ 1 - ──────────────────── // ⎝ ⎝reserveIn + amountIn⎠ ⎠ // ----------------------------------------------------------------------- // Assert `amountIn` cannot exceed `MAX_PERCENTAGE_IN`. if (amountIn > reserveIn.mulWad(MAX_PERCENTAGE_IN)) { revert AmountInTooLarge(); } return reserveOut.mulWad( 1e18.rawSub( powWadUp(reserveIn.divWadUp(reserveIn + amountIn), weightIn.divWad(weightOut)) ) ); } function linearInterpolation(uint256 x, uint256 y, uint256 i, uint256 n) internal pure returns (uint256) { // ----------------------------------------------------------------------- // // ⎛ |x - y| ⎞ // x ± i ⋅ ───────── // ⎝ n ⎠ // ----------------------------------------------------------------------- return x > y ? x.rawSub(x.rawSub(y).mulDiv(i.min(n), n)) : x.rawAdd(y.rawSub(x).mulDiv(i.min(n), n)); } /// ----------------------------------------------------------------------- /// Fixed-point Arithmetic /// ----------------------------------------------------------------------- function powWad(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 1 ether) { return x; } else if (y == 2 ether) { return x.mulWad(x); } else if (y == 4 ether) { uint256 square = x.mulWad(x); return square.mulWad(square); } return int256(x).powWad(int256(y)).toUint256(); } function powWadUp(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 1 ether) { return x; } else if (y == 2 ether) { return x.mulWadUp(x); } else if (y == 4 ether) { uint256 square = x.mulWadUp(x); return square.mulWadUp(square); } uint256 power = int256(x).powWad(int256(y)).toUint256(); return power + power.mulWadUp(MAX_POW_RELATIVE_ERROR) + 1; } }
Compiler Settings
{"viaIR":true,"remappings":["@prb/math/=lib/prb-math/","erc4626-tests/=lib/v2-core/lib/openzeppelin-contracts/lib/erc4626-tests/","forge-std/=lib/forge-std/src/","ds-test/=lib/forge-std/lib/ds-test/src/","murky/=lib/murky/","@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/","solady/=lib/solady/","solarray/=lib/v2-core/lib/solarray/src/","solplot/=lib/weighted-math-lib/lib/solplot/src/","v2-core/=lib/v2-core/","weighted-math-lib/=lib/weighted-math-lib/src/"],"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers","metadata"]}},"optimizer":{"runs":1000,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{},"evmVersion":"paris"}
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"_owner","internalType":"address"}]},{"type":"error","name":"AlreadyInitialized","inputs":[]},{"type":"error","name":"InvalidInput","inputs":[]},{"type":"error","name":"InvalidPercentageSum","inputs":[]},{"type":"error","name":"NewOwnerIsZeroAddress","inputs":[]},{"type":"error","name":"NoHandoverRequest","inputs":[]},{"type":"error","name":"Unauthorized","inputs":[]},{"type":"error","name":"ZeroAddress","inputs":[]},{"type":"event","name":"FeeRecipientUpdated","inputs":[{"type":"address","name":"recipient","internalType":"address","indexed":false},{"type":"uint256","name":"percentage","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"OwnershipHandoverCanceled","inputs":[{"type":"address","name":"pendingOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipHandoverRequested","inputs":[{"type":"address","name":"pendingOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"oldOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"payable","outputs":[],"name":"cancelOwnershipHandover","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[],"name":"completeOwnershipHandover","inputs":[{"type":"address","name":"pendingOwner","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"distributeFee","inputs":[{"type":"address","name":"asset","internalType":"address"},{"type":"uint256","name":"amount","internalType":"uint256"},{"type":"uint256","name":"swapFeesAsset","internalType":"uint256"},{"type":"address","name":"share","internalType":"address"},{"type":"uint256","name":"swapFeesShare","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"result","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"result","internalType":"uint256"}],"name":"ownershipHandoverExpiresAt","inputs":[{"type":"address","name":"pendingOwner","internalType":"address"}]},{"type":"function","stateMutability":"payable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[],"name":"requestOwnershipHandover","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"updateAssetSwapFeeRecipient","inputs":[{"type":"address","name":"_asfr","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"updateRecipients","inputs":[{"type":"address[]","name":"_recipients","internalType":"address[]"},{"type":"uint256[]","name":"_percentages","internalType":"uint256[]"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"updateShareSwapFeeRecipient","inputs":[{"type":"address","name":"_ssfr","internalType":"address"}]}]
Contract Creation Code
0x60803461011d57601f6109c538819003918201601f19168301916001600160401b038311848410176101225780849260209460405283398101031261011d57516001600160a01b0381169081900361011d5780638b78c6d81955600081817f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3600154680100000000000000008110156101095760018101806001558110156100f5576040670de0b6b3a7640000916001845260208420019260018060a01b031993858582541617905584815280602052205581816002541617600255600354161760035560405161088c90816101398239f35b634e487b7160e01b82526032600452602482fd5b634e487b7160e01b82526041600452602482fd5b600080fd5b634e487b7160e01b600052604160045260246000fdfe6040608081526004908136101561001557600080fd5b600091823560e01c90816304d7cc7a146106ae5781631073ecd214610451578163256929621461040657816354d1f13d146103c0578163715018a61461037a578163886c1372146102e35781638da5cb5b146102b7578163e9a94d36146101c3578163f04e283e14610140578163f2fde38b146100d2575063fee81cf41461009c57600080fd5b346100ce5760203660031901126100ce576020916100b8610733565b9063389a75e1600c525281600c20549051908152f35b5080fd5b839060203660031901126100ce576100e8610733565b906100f161077f565b8160601b1561013557506001600160a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b637448fbae8352601cfd5b8360203660031901126101c057610155610733565b61015d61077f565b63389a75e1600c528082526020600c2092835442116101b55750816001600160a01b0392935516638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b636f5e88188352601cfd5b80fd5b8284346101c05760a03660031901126101c0576101de610733565b6024359060443593606435936001600160a01b039182861686036100ce5760843596825b60019081548110156102755785610218826107d6565b919054600392831b1c168652856020528486205480600019048a1181026102695787610263928b92670de0b6b3a7640000610252876107d6565b92909502049354911b1c168961080d565b01610202565b8c63bac65e5b8852601cfd5b848684898c8e806102a1575b50508161028c578380f35b61029a92600254169061080d565b8180808380f35b6102b09185600354169061080d565b8480610281565b5050346100ce57816003193601126100ce576020906001600160a01b03638b78c6d81954915191168152f35b905034610376576020366003190112610376576001600160a01b03610306610733565b61030e61077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960025416176002558151908152836020820152a180f35b825163d92e233d60e01b8152fd5b8280fd5b83806003193601126101c05761038e61077f565b80638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a35580f35b83806003193601126101c05763389a75e1600c52338152806020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c928280a280f35b83806003193601126101c05763389a75e1600c523381526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d8280a280f35b9190503461037657806003193601126103765767ffffffffffffffff82358181116106aa57610483903690850161074e565b909160249081359081116106a65761049e903690870161074e565b91906104a861077f565b82840361067e5760019283548985558061063b575b5088979695885b86811061050757898989670de0b6b3a76400008e036104e1578280f35b517fddbb6364000000000000000000000000000000000000000000000000000000008152fd5b6001600160a01b038061052361051e848b8761079c565b6107c2565b161561062c57680100000000000000009b61054261051e848b8761079c565b88549d8e101561061a5761055b8e8e9f8b018b556107d6565b8480839493549260031b9316831b921b191617905561057b83868861079c565b358261058b61051e868d8961079c565b168d5260209d8e528a8d20556105a283868861079c565b3581018091116106085789899a9b9c9d84936105e561051e8c977f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd6969f8a61079c565b916105f1868a8c61079c565b3591845193168352820152a10199989796996104c4565b868c60118d634e487b7160e01b835252fd5b878d60418e634e487b7160e01b835252fd5b89895163d92e233d60e01b8152fd5b848a52847fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6918201915b8281106106735750506104bd565b8b8155018590610665565b8686517fb4fa3fb3000000000000000000000000000000000000000000000000000000008152fd5b8680fd5b8480fd5b905034610376576020366003190112610376576001600160a01b036106d1610733565b6106d961077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960035416176003558151908152836020820152a180f35b600435906001600160a01b038216820361074957565b600080fd5b9181601f840112156107495782359167ffffffffffffffff8311610749576020808501948460051b01011161074957565b638b78c6d81954330361078e57565b6382b429006000526004601cfd5b91908110156107ac5760051b0190565b634e487b7160e01b600052603260045260246000fd5b356001600160a01b03811681036107495790565b6001548110156107ac5760016000527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf60190600090565b60109260209260145260345260446000938480936fa9059cbb00000000000000000000000082525af13d15600183511417161561084957603452565b6390b8ec1890526004601cfdfea264697066735822122036fa523b0342f62d0ee3f980899a8ab297566326a977f273916069dd57a03de664736f6c63430008130033000000000000000000000000049ca0046c4d6f86cc38c8c3e602c69d618f7a5e
Deployed ByteCode
0x6040608081526004908136101561001557600080fd5b600091823560e01c90816304d7cc7a146106ae5781631073ecd214610451578163256929621461040657816354d1f13d146103c0578163715018a61461037a578163886c1372146102e35781638da5cb5b146102b7578163e9a94d36146101c3578163f04e283e14610140578163f2fde38b146100d2575063fee81cf41461009c57600080fd5b346100ce5760203660031901126100ce576020916100b8610733565b9063389a75e1600c525281600c20549051908152f35b5080fd5b839060203660031901126100ce576100e8610733565b906100f161077f565b8160601b1561013557506001600160a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b637448fbae8352601cfd5b8360203660031901126101c057610155610733565b61015d61077f565b63389a75e1600c528082526020600c2092835442116101b55750816001600160a01b0392935516638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b636f5e88188352601cfd5b80fd5b8284346101c05760a03660031901126101c0576101de610733565b6024359060443593606435936001600160a01b039182861686036100ce5760843596825b60019081548110156102755785610218826107d6565b919054600392831b1c168652856020528486205480600019048a1181026102695787610263928b92670de0b6b3a7640000610252876107d6565b92909502049354911b1c168961080d565b01610202565b8c63bac65e5b8852601cfd5b848684898c8e806102a1575b50508161028c578380f35b61029a92600254169061080d565b8180808380f35b6102b09185600354169061080d565b8480610281565b5050346100ce57816003193601126100ce576020906001600160a01b03638b78c6d81954915191168152f35b905034610376576020366003190112610376576001600160a01b03610306610733565b61030e61077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960025416176002558151908152836020820152a180f35b825163d92e233d60e01b8152fd5b8280fd5b83806003193601126101c05761038e61077f565b80638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a35580f35b83806003193601126101c05763389a75e1600c52338152806020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c928280a280f35b83806003193601126101c05763389a75e1600c523381526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d8280a280f35b9190503461037657806003193601126103765767ffffffffffffffff82358181116106aa57610483903690850161074e565b909160249081359081116106a65761049e903690870161074e565b91906104a861077f565b82840361067e5760019283548985558061063b575b5088979695885b86811061050757898989670de0b6b3a76400008e036104e1578280f35b517fddbb6364000000000000000000000000000000000000000000000000000000008152fd5b6001600160a01b038061052361051e848b8761079c565b6107c2565b161561062c57680100000000000000009b61054261051e848b8761079c565b88549d8e101561061a5761055b8e8e9f8b018b556107d6565b8480839493549260031b9316831b921b191617905561057b83868861079c565b358261058b61051e868d8961079c565b168d5260209d8e528a8d20556105a283868861079c565b3581018091116106085789899a9b9c9d84936105e561051e8c977f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd6969f8a61079c565b916105f1868a8c61079c565b3591845193168352820152a10199989796996104c4565b868c60118d634e487b7160e01b835252fd5b878d60418e634e487b7160e01b835252fd5b89895163d92e233d60e01b8152fd5b848a52847fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6918201915b8281106106735750506104bd565b8b8155018590610665565b8686517fb4fa3fb3000000000000000000000000000000000000000000000000000000008152fd5b8680fd5b8480fd5b905034610376576020366003190112610376576001600160a01b036106d1610733565b6106d961077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960035416176003558151908152836020820152a180f35b600435906001600160a01b038216820361074957565b600080fd5b9181601f840112156107495782359167ffffffffffffffff8311610749576020808501948460051b01011161074957565b638b78c6d81954330361078e57565b6382b429006000526004601cfd5b91908110156107ac5760051b0190565b634e487b7160e01b600052603260045260246000fd5b356001600160a01b03811681036107495790565b6001548110156107ac5760016000527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf60190600090565b60109260209260145260345260446000938480936fa9059cbb00000000000000000000000082525af13d15600183511417161561084957603452565b6390b8ec1890526004601cfdfea264697066735822122036fa523b0342f62d0ee3f980899a8ab297566326a977f273916069dd57a03de664736f6c63430008130033