false
false
0
The new Blockscout UI is now open source! Learn how to deploy it here

Contract Address Details

0xE640f0beCB2A130f3402824C06BDBAF538E3588f

Contract Name
Treasury
Creator
0x049ca0–8f7a5e at 0x4deb6e–ff3bc1
Balance
0 ETH
Tokens
Fetching tokens...
Transactions
Fetching transactions...
Transfers
Fetching transfers...
Gas Used
Fetching gas used...
Last Balance Update
1223597
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
Treasury




Optimization enabled
true
Compiler version
v0.8.19+commit.7dd6d404




Optimization runs
1000
EVM Version
paris




Verified at
2024-06-28T02:51:33.671883Z

Constructor Arguments

0x000000000000000000000000049ca0046c4d6f86cc38c8c3e602c69d618f7a5e

Arg [0] (address) : 0x049ca0046c4d6f86cc38c8c3e602c69d618f7a5e

              

src/Treasury.sol

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity =0.8.19;

import "solady/src/auth/Ownable.sol";
import "solady/src/utils/SafeTransferLib.sol";
import "weighted-math-lib/WeightedMathLib.sol";

contract Treasury is Ownable {
    /// -----------------------------------------------------------------------
    /// Dependencies
    /// -----------------------------------------------------------------------

    using FixedPointMathLib for *;

    using SafeTransferLib for address;

    /// -----------------------------------------------------------------------
    /// Events
    /// -----------------------------------------------------------------------

    /// @dev Emitted when the fee recipient is updated.
    /// @param recipient The new fee recipient address.
    /// @param percentage The new fee recipient percentage.
    event FeeRecipientUpdated(address recipient, uint256 percentage);

    /// -----------------------------------------------------------------------
    /// Custom Errors
    /// -----------------------------------------------------------------------

    /// @dev Error thrown when the input lenght is not same for recipients and percentages.
    error InvalidInput();

    /// @dev Error thrown when the percentage sum is not 100.
    error InvalidPercentageSum();

    /// @dev Error thrown when the address is 0x.
    error ZeroAddress();

    /// -----------------------------------------------------------------------
    /// Mutable Storage
    /// -----------------------------------------------------------------------

    /// @notice Mapping to track fee percentage for each address.
    mapping(address => uint256) private feePercents;

    /// @notice List of addresses of fee recipients.
    address[] private recipients;

    /// @notice Address of asset swap fee recipient.
    address private assetSwapFeeRecipient;

    /// @notice Address of share swap fee recipient.
    address private shareSwapFeeRecipient;

    /// -----------------------------------------------------------------------
    /// Constructor
    /// -----------------------------------------------------------------------

    /// @param _owner The owner of the factory contract.
    constructor(address _owner) {
        // Initialize the owner and implementation address.
        _initializeOwner(_owner);

        // Set the initial recipientes here.
        recipients.push(_owner);
        feePercents[_owner] = 1 ether;

        assetSwapFeeRecipient = _owner;
        shareSwapFeeRecipient = _owner;
    }

    /**
     * @notice Update fee recipients and percentages.
     * @param _recipients List of addresses to be added as fee recipients.
     */
    function updateRecipients(
        address[] calldata _recipients,
        uint256[] calldata _percentages
    )
        public
        onlyOwner
    {
        if (_recipients.length != _percentages.length) revert InvalidInput();

        delete recipients;

        uint256 totalPercentage;

        for (uint256 i = 0; i < _recipients.length;) {
            if (_recipients[i] == address(0)) revert ZeroAddress();
            recipients.push(_recipients[i]);
            feePercents[_recipients[i]] = _percentages[i];
            totalPercentage += _percentages[i];
            emit FeeRecipientUpdated(_recipients[i], _percentages[i]);

            unchecked {
                ++i;
            }
        }

        if (totalPercentage != 1 ether) revert InvalidPercentageSum();
    }

    function updateAssetSwapFeeRecipient(address _asfr) public onlyOwner {
        if (_asfr == address(0)) revert ZeroAddress();

        assetSwapFeeRecipient = _asfr;

        emit FeeRecipientUpdated(_asfr, 0);
    }

    function updateShareSwapFeeRecipient(address _ssfr) public onlyOwner {
        if (_ssfr == address(0)) revert ZeroAddress();

        shareSwapFeeRecipient = _ssfr;

        emit FeeRecipientUpdated(_ssfr, 0);
    }

    /**
     * @notice Distriburte the fee to the recipients.
     * @param asset Address of the asset that will be distrubuted.
     * @param amount Total amount of fees that will be distributed.
     */
    function distributeFee(
        address asset,
        uint256 amount,
        uint256 swapFeesAsset,
        address share,
        uint256 swapFeesShare
    )
        external
    {
        for (uint256 i = 0; i < recipients.length;) {
            uint256 feeP = feePercents[recipients[i]];
            uint256 feeShare = amount.mulWad(feeP);

            asset.safeTransfer(recipients[i], feeShare);

            unchecked {
                ++i;
            }
        }
        if (swapFeesShare > 0) {
            share.safeTransfer(shareSwapFeeRecipient, swapFeesShare);
        }
        if (swapFeesAsset > 0) {
            asset.safeTransfer(assetSwapFeeRecipient, swapFeesAsset);
        }
    }
}
        

lib/solady/src/auth/Ownable.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /// @dev Cannot double-initialize.
    error AlreadyInitialized();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by:
    /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
    /// It is intentionally chosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    bytes32 internal constant _OWNER_SLOT =
        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
    function _guardInitializeOwner() internal pure virtual returns (bool guard) {}

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                if sload(ownerSlot) {
                    mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                    revert(0x1c, 0x04)
                }
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(_OWNER_SLOT, newOwner)
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, newOwner)
            }
        }
    }

    /// @dev Throws if the sender is not the owner.
    function _checkOwner() internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    /// Override to return a different value if needed.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
        return 48 * 3600;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(shl(96, newOwner)) {
                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                revert(0x1c, 0x04)
            }
        }
        _setOwner(newOwner);
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        _setOwner(address(0));
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to `expires`.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            let handoverSlot := keccak256(0x0c, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
        }
        _setOwner(pendingOwner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_OWNER_SLOT)
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            // Load the handover slot.
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }
}
          

lib/solady/src/utils/FixedPointMathLib.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            int256 wad = int256(WAD);
            int256 p = x;
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (w >> 63 == 0) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == 0) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != 0);
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c != 0) {
                int256 t = w | 1;
                /// @solidity memory-safe-assembly
                assembly {
                    x := sdiv(mul(x, wad), t)
                }
                x = (t * (wad + lnWad(x)));
                /// @solidity memory-safe-assembly
                assembly {
                    w := sdiv(x, add(wad, t))
                }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                // 512-bit multiply `[p1 p0] = x * y`.
                // Compute the product mod `2**256` and mod `2**256 - 1`
                // then use the Chinese Remainder Theorem to reconstruct
                // the 512 bit result. The result is stored in two 256
                // variables such that `product = p1 * 2**256 + p0`.

                // Least significant 256 bits of the product.
                result := mul(x, y) // Temporarily use `result` as `p0` to save gas.
                let mm := mulmod(x, y, not(0))
                // Most significant 256 bits of the product.
                let p1 := sub(mm, add(result, lt(mm, result)))

                // Handle non-overflow cases, 256 by 256 division.
                if iszero(p1) {
                    if iszero(d) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    result := div(result, d)
                    break
                }

                // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                if iszero(gt(d, p1)) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }

                /*------------------- 512 by 256 division --------------------*/

                // Make division exact by subtracting the remainder from `[p1 p0]`.
                // Compute remainder using mulmod.
                let r := mulmod(x, y, d)
                // `t` is the least significant bit of `d`.
                // Always greater or equal to 1.
                let t := and(d, sub(0, d))
                // Divide `d` by `t`, which is a power of two.
                d := div(d, t)
                // Invert `d mod 2**256`
                // Now that `d` is an odd number, it has an inverse
                // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                // Compute the inverse by starting with a seed that is correct
                // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                let inv := xor(2, mul(3, d))
                // Now use Newton-Raphson iteration to improve the precision.
                // Thanks to Hensel's lifting lemma, this also works in modular
                // arithmetic, doubling the correct bits in each step.
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                result :=
                    mul(
                        // Divide [p1 p0] by the factors of two.
                        // Shift in bits from `p1` into `p0`. For this we need
                        // to flip `t` such that it is `2**256 / t`.
                        or(
                            mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
                            div(sub(result, r), t)
                        ),
                        // inverse mod 2**256
                        mul(inv, sub(2, mul(d, inv)))
                    )
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        result = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                result := add(result, 1)
                if iszero(result) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if iszero(iszero(x)) {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))

            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))

            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)

            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            z = 10 ** 9;
            if (x <= type(uint256).max / 10 ** 36 - 1) {
                x *= 10 ** 18;
                z = 1;
            }
            z *= sqrt(x);
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`.
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            z = 10 ** 12;
            if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) {
                if (x >= type(uint256).max / 10 ** 36) {
                    x *= 10 ** 18;
                    z = 10 ** 6;
                } else {
                    x *= 10 ** 36;
                    z = 1;
                }
            }
            z *= cbrt(x);
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (((x & 1) + (y & 1)) >> 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(sub(0, shr(255, x)), add(sub(0, shr(255, x)), x))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}
          

lib/solady/src/utils/SafeCastLib.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe integer casting library that reverts on overflow.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
library SafeCastLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    error Overflow();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*          UNSIGNED INTEGER SAFE CASTING OPERATIONS          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toUint8(uint256 x) internal pure returns (uint8) {
        if (x >= 1 << 8) _revertOverflow();
        return uint8(x);
    }

    function toUint16(uint256 x) internal pure returns (uint16) {
        if (x >= 1 << 16) _revertOverflow();
        return uint16(x);
    }

    function toUint24(uint256 x) internal pure returns (uint24) {
        if (x >= 1 << 24) _revertOverflow();
        return uint24(x);
    }

    function toUint32(uint256 x) internal pure returns (uint32) {
        if (x >= 1 << 32) _revertOverflow();
        return uint32(x);
    }

    function toUint40(uint256 x) internal pure returns (uint40) {
        if (x >= 1 << 40) _revertOverflow();
        return uint40(x);
    }

    function toUint48(uint256 x) internal pure returns (uint48) {
        if (x >= 1 << 48) _revertOverflow();
        return uint48(x);
    }

    function toUint56(uint256 x) internal pure returns (uint56) {
        if (x >= 1 << 56) _revertOverflow();
        return uint56(x);
    }

    function toUint64(uint256 x) internal pure returns (uint64) {
        if (x >= 1 << 64) _revertOverflow();
        return uint64(x);
    }

    function toUint72(uint256 x) internal pure returns (uint72) {
        if (x >= 1 << 72) _revertOverflow();
        return uint72(x);
    }

    function toUint80(uint256 x) internal pure returns (uint80) {
        if (x >= 1 << 80) _revertOverflow();
        return uint80(x);
    }

    function toUint88(uint256 x) internal pure returns (uint88) {
        if (x >= 1 << 88) _revertOverflow();
        return uint88(x);
    }

    function toUint96(uint256 x) internal pure returns (uint96) {
        if (x >= 1 << 96) _revertOverflow();
        return uint96(x);
    }

    function toUint104(uint256 x) internal pure returns (uint104) {
        if (x >= 1 << 104) _revertOverflow();
        return uint104(x);
    }

    function toUint112(uint256 x) internal pure returns (uint112) {
        if (x >= 1 << 112) _revertOverflow();
        return uint112(x);
    }

    function toUint120(uint256 x) internal pure returns (uint120) {
        if (x >= 1 << 120) _revertOverflow();
        return uint120(x);
    }

    function toUint128(uint256 x) internal pure returns (uint128) {
        if (x >= 1 << 128) _revertOverflow();
        return uint128(x);
    }

    function toUint136(uint256 x) internal pure returns (uint136) {
        if (x >= 1 << 136) _revertOverflow();
        return uint136(x);
    }

    function toUint144(uint256 x) internal pure returns (uint144) {
        if (x >= 1 << 144) _revertOverflow();
        return uint144(x);
    }

    function toUint152(uint256 x) internal pure returns (uint152) {
        if (x >= 1 << 152) _revertOverflow();
        return uint152(x);
    }

    function toUint160(uint256 x) internal pure returns (uint160) {
        if (x >= 1 << 160) _revertOverflow();
        return uint160(x);
    }

    function toUint168(uint256 x) internal pure returns (uint168) {
        if (x >= 1 << 168) _revertOverflow();
        return uint168(x);
    }

    function toUint176(uint256 x) internal pure returns (uint176) {
        if (x >= 1 << 176) _revertOverflow();
        return uint176(x);
    }

    function toUint184(uint256 x) internal pure returns (uint184) {
        if (x >= 1 << 184) _revertOverflow();
        return uint184(x);
    }

    function toUint192(uint256 x) internal pure returns (uint192) {
        if (x >= 1 << 192) _revertOverflow();
        return uint192(x);
    }

    function toUint200(uint256 x) internal pure returns (uint200) {
        if (x >= 1 << 200) _revertOverflow();
        return uint200(x);
    }

    function toUint208(uint256 x) internal pure returns (uint208) {
        if (x >= 1 << 208) _revertOverflow();
        return uint208(x);
    }

    function toUint216(uint256 x) internal pure returns (uint216) {
        if (x >= 1 << 216) _revertOverflow();
        return uint216(x);
    }

    function toUint224(uint256 x) internal pure returns (uint224) {
        if (x >= 1 << 224) _revertOverflow();
        return uint224(x);
    }

    function toUint232(uint256 x) internal pure returns (uint232) {
        if (x >= 1 << 232) _revertOverflow();
        return uint232(x);
    }

    function toUint240(uint256 x) internal pure returns (uint240) {
        if (x >= 1 << 240) _revertOverflow();
        return uint240(x);
    }

    function toUint248(uint256 x) internal pure returns (uint248) {
        if (x >= 1 << 248) _revertOverflow();
        return uint248(x);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*           SIGNED INTEGER SAFE CASTING OPERATIONS           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toInt8(int256 x) internal pure returns (int8) {
        int8 y = int8(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt16(int256 x) internal pure returns (int16) {
        int16 y = int16(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt24(int256 x) internal pure returns (int24) {
        int24 y = int24(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt32(int256 x) internal pure returns (int32) {
        int32 y = int32(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt40(int256 x) internal pure returns (int40) {
        int40 y = int40(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt48(int256 x) internal pure returns (int48) {
        int48 y = int48(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt56(int256 x) internal pure returns (int56) {
        int56 y = int56(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt64(int256 x) internal pure returns (int64) {
        int64 y = int64(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt72(int256 x) internal pure returns (int72) {
        int72 y = int72(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt80(int256 x) internal pure returns (int80) {
        int80 y = int80(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt88(int256 x) internal pure returns (int88) {
        int88 y = int88(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt96(int256 x) internal pure returns (int96) {
        int96 y = int96(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt104(int256 x) internal pure returns (int104) {
        int104 y = int104(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt112(int256 x) internal pure returns (int112) {
        int112 y = int112(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt120(int256 x) internal pure returns (int120) {
        int120 y = int120(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt128(int256 x) internal pure returns (int128) {
        int128 y = int128(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt136(int256 x) internal pure returns (int136) {
        int136 y = int136(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt144(int256 x) internal pure returns (int144) {
        int144 y = int144(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt152(int256 x) internal pure returns (int152) {
        int152 y = int152(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt160(int256 x) internal pure returns (int160) {
        int160 y = int160(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt168(int256 x) internal pure returns (int168) {
        int168 y = int168(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt176(int256 x) internal pure returns (int176) {
        int176 y = int176(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt184(int256 x) internal pure returns (int184) {
        int184 y = int184(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt192(int256 x) internal pure returns (int192) {
        int192 y = int192(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt200(int256 x) internal pure returns (int200) {
        int200 y = int200(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt208(int256 x) internal pure returns (int208) {
        int208 y = int208(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt216(int256 x) internal pure returns (int216) {
        int216 y = int216(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt224(int256 x) internal pure returns (int224) {
        int224 y = int224(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt232(int256 x) internal pure returns (int232) {
        int232 y = int232(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt240(int256 x) internal pure returns (int240) {
        int240 y = int240(x);
        if (x != y) _revertOverflow();
        return y;
    }

    function toInt248(int256 x) internal pure returns (int248) {
        int248 y = int248(x);
        if (x != y) _revertOverflow();
        return y;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               OTHER SAFE CASTING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function toInt256(uint256 x) internal pure returns (int256) {
        if (x >= 1 << 255) _revertOverflow();
        return int256(x);
    }

    function toUint256(int256 x) internal pure returns (uint256) {
        if (x < 0) _revertOverflow();
        return uint256(x);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function _revertOverflow() private pure {
        /// @solidity memory-safe-assembly
        assembly {
            // Store the function selector of `Overflow()`.
            mstore(0x00, 0x35278d12)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
    }
}
          

lib/solady/src/utils/SafeTransferLib.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
/// - For ERC20s, this implementation won't check that a token has code,
///   responsibility is delegated to the caller.
library SafeTransferLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /// @dev The ERC20 `transferFrom` has failed.
    error TransferFromFailed();

    /// @dev The ERC20 `transfer` has failed.
    error TransferFailed();

    /// @dev The ERC20 `approve` has failed.
    error ApproveFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;

    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
    /// storage reads and writes, but low enough to prevent griefing.
    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ETH OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
    //
    // The regular variants:
    // - Forwards all remaining gas to the target.
    // - Reverts if the target reverts.
    // - Reverts if the current contract has insufficient balance.
    //
    // The force variants:
    // - Forwards with an optional gas stipend
    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
    // - If the target reverts, or if the gas stipend is exhausted,
    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
    // - Reverts if the current contract has insufficient balance.
    //
    // The try variants:
    // - Forwards with a mandatory gas stipend.
    // - Instead of reverting, returns whether the transfer succeeded.

    /// @dev Sends `amount` (in wei) ETH to `to`.
    function safeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`.
    function safeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer all the ETH and check if it succeeded or not.
            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function trySafeTransferAllETH(address to, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ERC20 OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for
    /// the current contract to manage.
    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends all of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have their entire balance approved for
    /// the current contract to manage.
    function safeTransferAllFrom(address token, address from, address to)
        internal
        returns (uint256 amount)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransfer(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
            mstore(0x20, address()) // Store the address of the current contract.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x14, to) // Store the `to` argument.
            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// Reverts upon failure.
    function safeApprove(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
    /// then retries the approval again (some tokens, e.g. USDT, requires this).
    /// Reverts upon failure.
    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, retrying upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                    call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                )
            ) {
                mstore(0x34, 0) // Store 0 for the `amount`.
                mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                mstore(0x34, amount) // Store back the original `amount`.
                // Retry the approval, reverting upon failure.
                if iszero(
                    and(
                        or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
                        call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                    )
                ) {
                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Returns the amount of ERC20 `token` owned by `account`.
    /// Returns zero if the `token` does not exist.
    function balanceOf(address token, address account) internal view returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, account) // Store the `account` argument.
            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            amount :=
                mul(
                    mload(0x20),
                    and( // The arguments of `and` are evaluated from right to left.
                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                    )
                )
        }
    }
}
          

lib/weighted-math-lib/src/WeightedMathLib.sol

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.19;

import "solady/src/utils/FixedPointMathLib.sol";
import "solady/src/utils/SafeCastLib.sol";

library WeightedMathLib {
    /// -----------------------------------------------------------------------
    /// Dependencies
    /// -----------------------------------------------------------------------

    using SafeCastLib for *;

    using FixedPointMathLib for *;

    /// -----------------------------------------------------------------------
    /// Errors
    /// -----------------------------------------------------------------------

    /// @dev Thrown when `amountIn` exceeds `MAX_PERCENTAGE_IN`, which is imposed by balancer.
    error AmountInTooLarge();

    /// @dev Thrown when `amountOut` exceeds `MAX_PERCENTAGE_OUT`, which is imposed by balancer.
    error AmountOutTooLarge();

    /// -----------------------------------------------------------------------
    /// Constants
    /// -----------------------------------------------------------------------

    /// @dev Maximum relative error allowed for fixed-point math operations (10^(-14)).
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000;

    /// @dev Maximum percentage of reserveIn allowed to be swapped in when using `getAmountOut` (30%).
    uint256 internal constant MAX_PERCENTAGE_IN = 0.3 ether;

    /// @dev Maximum percentage of reserveOut allowed to be swapped out when using `getAmountIn` (30%).
    uint256 internal constant MAX_PERCENTAGE_OUT = 0.3 ether;

    /// -----------------------------------------------------------------------
    ///  Weighted Arithmetic
    /// -----------------------------------------------------------------------

    /// @notice Calculate the spot price given reserves and weights of two assets in a pool.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getSpotPrice(
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256) {
        // -----------------------------------------------------------------------
        // (reserveIn / weightIn) / (reserveOut / weightOut)
        // -----------------------------------------------------------------------

        return reserveIn.divWad(weightIn).divWad(reserveOut.divWad(weightOut));
    }

    /// @notice Calculate the invariant of a weighted pool given reserves and weights of the assets.
    /// @param reserves An array of reserves for all the assets in the pool.
    /// @param weights An array of weights for all the assets in the pool.
    function getInvariant(uint256[] memory reserves, uint256[] memory weights)
        internal
        pure
        returns (uint256 invariant)
    {
        // -----------------------------------------------------------------------
        //   ____
        //   ⎟⎟          weight
        //   ⎟⎟  reserve ^     = i
        //   n = totalAssets
        // -----------------------------------------------------------------------

        invariant = 1e18;

        uint256 n = weights.length;

        for (uint256 i; i < n; i = i.rawAdd(1)) {
            invariant = invariant.mulWad(int256(reserves[i]).powWad(int256(weights[i])).toUint256());
        }
    }

    /// @notice Calculate the invariant of a weighted pool given two reserves and weights.
    /// @dev Optimized for pools that contain exactly two assets.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getInvariant(
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256 invariant) {
        // -----------------------------------------------------------------------
        //   ____
        //   ⎟⎟          weight
        //   ⎟⎟  reserve ^     = i
        //   n = 2
        // -----------------------------------------------------------------------

        invariant = 1e18.mulWad(powWad(reserveIn, weightIn)).mulWad(powWad(reserveOut, weightOut));
    }

    /// @notice Calculate the amount of input asset required to get a specific amount of output asset from the pool.
    /// @param amountOut The desired amount of output asset.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getAmountIn(
        uint256 amountOut,
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256) {
        unchecked {
            // -----------------------------------------------------------------------
            //
            //             ⎛                       ⎛weightIn ⎞    ⎞
            //             ⎜                        ─────────      ⎟
            //             ⎜                       ⎝weightOut⎠    ⎟
            //             ⎜⎛     reserveOut      ⎞               ⎟
            // reserveIn ⋅    ─────────────────────             - 1
            //             ⎝⎝reserveOut - amountIn⎠               ⎠
            // -----------------------------------------------------------------------

            // Assert `amountOut` cannot exceed `MAX_PERCENTAGE_OUT`.
            if (amountOut > reserveOut.mulWad(MAX_PERCENTAGE_OUT)) {
                revert AmountOutTooLarge();
            }

            // `MAX_PERCENTAGE_OUT` check ensures `amountOut` is always less than `reserveOut`.
            return reserveIn.mulWadUp(
                powWadUp(
                    reserveOut.divWadUp(reserveOut.rawSub(amountOut)), weightOut.divWadUp(weightIn)
                ) - 1 ether
            );
        }
    }

    /// @notice Calculate the amount of output asset received by providing a specific amount of input asset to the pool.
    /// @param amountIn The amount of input asset provided.
    /// @param reserveIn The reserve of the input asset in the pool.
    /// @param reserveOut The reserve of the output asset in the pool.
    /// @param weightIn The weight of the input asset in the pool.
    /// @param weightOut The weight of the output asset in the pool.
    function getAmountOut(
        uint256 amountIn,
        uint256 reserveIn,
        uint256 reserveOut,
        uint256 weightIn,
        uint256 weightOut
    ) internal pure returns (uint256) {
        // -----------------------------------------------------------------------
        //
        //             ⎛                          ⎛weightIn ⎞⎞
        //             ⎜                           ─────────  ⎟
        //             ⎜                          ⎝weightOut⎠⎟
        //             ⎜    ⎛      reserveIn     ⎞           ⎟
        // reserveOut ⋅  1 -  ────────────────────
        //             ⎝    ⎝reserveIn + amountIn⎠           ⎠
        // -----------------------------------------------------------------------

        // Assert `amountIn` cannot exceed `MAX_PERCENTAGE_IN`.
        if (amountIn > reserveIn.mulWad(MAX_PERCENTAGE_IN)) {
            revert AmountInTooLarge();
        }

        return reserveOut.mulWad(
            1e18.rawSub(
                powWadUp(reserveIn.divWadUp(reserveIn + amountIn), weightIn.divWad(weightOut))
            )
        );
    }

    function linearInterpolation(uint256 x, uint256 y, uint256 i, uint256 n)
        internal
        pure
        returns (uint256)
    {
        // -----------------------------------------------------------------------
        //
        //         ⎛ |x - y| ⎞
        // x ± i ⋅   ─────────
        //         ⎝    n    ⎠
        // -----------------------------------------------------------------------

        return x > y
            ? x.rawSub(x.rawSub(y).mulDiv(i.min(n), n))
            : x.rawAdd(y.rawSub(x).mulDiv(i.min(n), n));
    }

    /// -----------------------------------------------------------------------
    /// Fixed-point Arithmetic
    /// -----------------------------------------------------------------------

    function powWad(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 1 ether) {
            return x;
        } else if (y == 2 ether) {
            return x.mulWad(x);
        } else if (y == 4 ether) {
            uint256 square = x.mulWad(x);
            return square.mulWad(square);
        }

        return int256(x).powWad(int256(y)).toUint256();
    }

    function powWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 1 ether) {
            return x;
        } else if (y == 2 ether) {
            return x.mulWadUp(x);
        } else if (y == 4 ether) {
            uint256 square = x.mulWadUp(x);
            return square.mulWadUp(square);
        }

        uint256 power = int256(x).powWad(int256(y)).toUint256();

        return power + power.mulWadUp(MAX_POW_RELATIVE_ERROR) + 1;
    }
}
          

Compiler Settings

{"viaIR":true,"remappings":["@prb/math/=lib/prb-math/","erc4626-tests/=lib/v2-core/lib/openzeppelin-contracts/lib/erc4626-tests/","forge-std/=lib/forge-std/src/","ds-test/=lib/forge-std/lib/ds-test/src/","murky/=lib/murky/","@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/","solady/=lib/solady/","solarray/=lib/v2-core/lib/solarray/src/","solplot/=lib/weighted-math-lib/lib/solplot/src/","v2-core/=lib/v2-core/","weighted-math-lib/=lib/weighted-math-lib/src/"],"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers","metadata"]}},"optimizer":{"runs":1000,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{},"evmVersion":"paris"}
              

Contract ABI

[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"_owner","internalType":"address"}]},{"type":"error","name":"AlreadyInitialized","inputs":[]},{"type":"error","name":"InvalidInput","inputs":[]},{"type":"error","name":"InvalidPercentageSum","inputs":[]},{"type":"error","name":"NewOwnerIsZeroAddress","inputs":[]},{"type":"error","name":"NoHandoverRequest","inputs":[]},{"type":"error","name":"Unauthorized","inputs":[]},{"type":"error","name":"ZeroAddress","inputs":[]},{"type":"event","name":"FeeRecipientUpdated","inputs":[{"type":"address","name":"recipient","internalType":"address","indexed":false},{"type":"uint256","name":"percentage","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"OwnershipHandoverCanceled","inputs":[{"type":"address","name":"pendingOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipHandoverRequested","inputs":[{"type":"address","name":"pendingOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"oldOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"payable","outputs":[],"name":"cancelOwnershipHandover","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[],"name":"completeOwnershipHandover","inputs":[{"type":"address","name":"pendingOwner","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"distributeFee","inputs":[{"type":"address","name":"asset","internalType":"address"},{"type":"uint256","name":"amount","internalType":"uint256"},{"type":"uint256","name":"swapFeesAsset","internalType":"uint256"},{"type":"address","name":"share","internalType":"address"},{"type":"uint256","name":"swapFeesShare","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"result","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"result","internalType":"uint256"}],"name":"ownershipHandoverExpiresAt","inputs":[{"type":"address","name":"pendingOwner","internalType":"address"}]},{"type":"function","stateMutability":"payable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[],"name":"requestOwnershipHandover","inputs":[]},{"type":"function","stateMutability":"payable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"updateAssetSwapFeeRecipient","inputs":[{"type":"address","name":"_asfr","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"updateRecipients","inputs":[{"type":"address[]","name":"_recipients","internalType":"address[]"},{"type":"uint256[]","name":"_percentages","internalType":"uint256[]"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"updateShareSwapFeeRecipient","inputs":[{"type":"address","name":"_ssfr","internalType":"address"}]}]
              

Contract Creation Code

0x60803461011d57601f6109c538819003918201601f19168301916001600160401b038311848410176101225780849260209460405283398101031261011d57516001600160a01b0381169081900361011d5780638b78c6d81955600081817f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3600154680100000000000000008110156101095760018101806001558110156100f5576040670de0b6b3a7640000916001845260208420019260018060a01b031993858582541617905584815280602052205581816002541617600255600354161760035560405161088c90816101398239f35b634e487b7160e01b82526032600452602482fd5b634e487b7160e01b82526041600452602482fd5b600080fd5b634e487b7160e01b600052604160045260246000fdfe6040608081526004908136101561001557600080fd5b600091823560e01c90816304d7cc7a146106ae5781631073ecd214610451578163256929621461040657816354d1f13d146103c0578163715018a61461037a578163886c1372146102e35781638da5cb5b146102b7578163e9a94d36146101c3578163f04e283e14610140578163f2fde38b146100d2575063fee81cf41461009c57600080fd5b346100ce5760203660031901126100ce576020916100b8610733565b9063389a75e1600c525281600c20549051908152f35b5080fd5b839060203660031901126100ce576100e8610733565b906100f161077f565b8160601b1561013557506001600160a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b637448fbae8352601cfd5b8360203660031901126101c057610155610733565b61015d61077f565b63389a75e1600c528082526020600c2092835442116101b55750816001600160a01b0392935516638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b636f5e88188352601cfd5b80fd5b8284346101c05760a03660031901126101c0576101de610733565b6024359060443593606435936001600160a01b039182861686036100ce5760843596825b60019081548110156102755785610218826107d6565b919054600392831b1c168652856020528486205480600019048a1181026102695787610263928b92670de0b6b3a7640000610252876107d6565b92909502049354911b1c168961080d565b01610202565b8c63bac65e5b8852601cfd5b848684898c8e806102a1575b50508161028c578380f35b61029a92600254169061080d565b8180808380f35b6102b09185600354169061080d565b8480610281565b5050346100ce57816003193601126100ce576020906001600160a01b03638b78c6d81954915191168152f35b905034610376576020366003190112610376576001600160a01b03610306610733565b61030e61077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960025416176002558151908152836020820152a180f35b825163d92e233d60e01b8152fd5b8280fd5b83806003193601126101c05761038e61077f565b80638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a35580f35b83806003193601126101c05763389a75e1600c52338152806020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c928280a280f35b83806003193601126101c05763389a75e1600c523381526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d8280a280f35b9190503461037657806003193601126103765767ffffffffffffffff82358181116106aa57610483903690850161074e565b909160249081359081116106a65761049e903690870161074e565b91906104a861077f565b82840361067e5760019283548985558061063b575b5088979695885b86811061050757898989670de0b6b3a76400008e036104e1578280f35b517fddbb6364000000000000000000000000000000000000000000000000000000008152fd5b6001600160a01b038061052361051e848b8761079c565b6107c2565b161561062c57680100000000000000009b61054261051e848b8761079c565b88549d8e101561061a5761055b8e8e9f8b018b556107d6565b8480839493549260031b9316831b921b191617905561057b83868861079c565b358261058b61051e868d8961079c565b168d5260209d8e528a8d20556105a283868861079c565b3581018091116106085789899a9b9c9d84936105e561051e8c977f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd6969f8a61079c565b916105f1868a8c61079c565b3591845193168352820152a10199989796996104c4565b868c60118d634e487b7160e01b835252fd5b878d60418e634e487b7160e01b835252fd5b89895163d92e233d60e01b8152fd5b848a52847fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6918201915b8281106106735750506104bd565b8b8155018590610665565b8686517fb4fa3fb3000000000000000000000000000000000000000000000000000000008152fd5b8680fd5b8480fd5b905034610376576020366003190112610376576001600160a01b036106d1610733565b6106d961077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960035416176003558151908152836020820152a180f35b600435906001600160a01b038216820361074957565b600080fd5b9181601f840112156107495782359167ffffffffffffffff8311610749576020808501948460051b01011161074957565b638b78c6d81954330361078e57565b6382b429006000526004601cfd5b91908110156107ac5760051b0190565b634e487b7160e01b600052603260045260246000fd5b356001600160a01b03811681036107495790565b6001548110156107ac5760016000527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf60190600090565b60109260209260145260345260446000938480936fa9059cbb00000000000000000000000082525af13d15600183511417161561084957603452565b6390b8ec1890526004601cfdfea264697066735822122036fa523b0342f62d0ee3f980899a8ab297566326a977f273916069dd57a03de664736f6c63430008130033000000000000000000000000049ca0046c4d6f86cc38c8c3e602c69d618f7a5e

Deployed ByteCode

0x6040608081526004908136101561001557600080fd5b600091823560e01c90816304d7cc7a146106ae5781631073ecd214610451578163256929621461040657816354d1f13d146103c0578163715018a61461037a578163886c1372146102e35781638da5cb5b146102b7578163e9a94d36146101c3578163f04e283e14610140578163f2fde38b146100d2575063fee81cf41461009c57600080fd5b346100ce5760203660031901126100ce576020916100b8610733565b9063389a75e1600c525281600c20549051908152f35b5080fd5b839060203660031901126100ce576100e8610733565b906100f161077f565b8160601b1561013557506001600160a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b637448fbae8352601cfd5b8360203660031901126101c057610155610733565b61015d61077f565b63389a75e1600c528082526020600c2092835442116101b55750816001600160a01b0392935516638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a35580f35b636f5e88188352601cfd5b80fd5b8284346101c05760a03660031901126101c0576101de610733565b6024359060443593606435936001600160a01b039182861686036100ce5760843596825b60019081548110156102755785610218826107d6565b919054600392831b1c168652856020528486205480600019048a1181026102695787610263928b92670de0b6b3a7640000610252876107d6565b92909502049354911b1c168961080d565b01610202565b8c63bac65e5b8852601cfd5b848684898c8e806102a1575b50508161028c578380f35b61029a92600254169061080d565b8180808380f35b6102b09185600354169061080d565b8480610281565b5050346100ce57816003193601126100ce576020906001600160a01b03638b78c6d81954915191168152f35b905034610376576020366003190112610376576001600160a01b03610306610733565b61030e61077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960025416176002558151908152836020820152a180f35b825163d92e233d60e01b8152fd5b8280fd5b83806003193601126101c05761038e61077f565b80638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a35580f35b83806003193601126101c05763389a75e1600c52338152806020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c928280a280f35b83806003193601126101c05763389a75e1600c523381526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d8280a280f35b9190503461037657806003193601126103765767ffffffffffffffff82358181116106aa57610483903690850161074e565b909160249081359081116106a65761049e903690870161074e565b91906104a861077f565b82840361067e5760019283548985558061063b575b5088979695885b86811061050757898989670de0b6b3a76400008e036104e1578280f35b517fddbb6364000000000000000000000000000000000000000000000000000000008152fd5b6001600160a01b038061052361051e848b8761079c565b6107c2565b161561062c57680100000000000000009b61054261051e848b8761079c565b88549d8e101561061a5761055b8e8e9f8b018b556107d6565b8480839493549260031b9316831b921b191617905561057b83868861079c565b358261058b61051e868d8961079c565b168d5260209d8e528a8d20556105a283868861079c565b3581018091116106085789899a9b9c9d84936105e561051e8c977f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd6969f8a61079c565b916105f1868a8c61079c565b3591845193168352820152a10199989796996104c4565b868c60118d634e487b7160e01b835252fd5b878d60418e634e487b7160e01b835252fd5b89895163d92e233d60e01b8152fd5b848a52847fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6918201915b8281106106735750506104bd565b8b8155018590610665565b8686517fb4fa3fb3000000000000000000000000000000000000000000000000000000008152fd5b8680fd5b8480fd5b905034610376576020366003190112610376576001600160a01b036106d1610733565b6106d961077f565b16908115610368575090817f681bde789a4a1b32496593ed25b5217751931c1ccb27200054edbef11c964dd69273ffffffffffffffffffffffffffffffffffffffff1960035416176003558151908152836020820152a180f35b600435906001600160a01b038216820361074957565b600080fd5b9181601f840112156107495782359167ffffffffffffffff8311610749576020808501948460051b01011161074957565b638b78c6d81954330361078e57565b6382b429006000526004601cfd5b91908110156107ac5760051b0190565b634e487b7160e01b600052603260045260246000fd5b356001600160a01b03811681036107495790565b6001548110156107ac5760016000527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf60190600090565b60109260209260145260345260446000938480936fa9059cbb00000000000000000000000082525af13d15600183511417161561084957603452565b6390b8ec1890526004601cfdfea264697066735822122036fa523b0342f62d0ee3f980899a8ab297566326a977f273916069dd57a03de664736f6c63430008130033