false
false
0
The new Blockscout UI is now open source! Learn how to deploy it here

Contract Address Details

0x8b9700D5c4212C3467e3f25989897293B06e147D

Contract Name
HeklaTaikoL2
Creator
0x1d2d1b–05b190 at 0x0a4e13–4c95e7
Balance
0 ETH
Tokens
Fetching tokens...
Transactions
0 Transactions
Transfers
0 Transfers
Gas Used
Fetching gas used...
Last Balance Update
1064606
Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
Contract name:
HeklaTaikoL2




Optimization enabled
true
Compiler version
v0.8.27+commit.40a35a09




Optimization runs
200
EVM Version
shanghai




Verified at
2024-09-20T03:22:42.104676Z

contracts/layer2/hekla/HeklaTaikoL2.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "../based/TaikoL2.sol";

/// @title HeklaTaikoL2
/// @custom:security-contact security@taiko.xyz
contract HeklaTaikoL2 is TaikoL2 {
    function ontakeForkHeight() public pure override returns (uint64) {
        return 840_512;
    }
}
        

contracts/shared/data/LibSharedData.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

library LibSharedData {
    /// @dev Struct that represents L2 basefee configurations
    struct BaseFeeConfig {
        uint8 adjustmentQuotient;
        uint8 sharingPctg;
        uint32 gasIssuancePerSecond;
        uint64 minGasExcess;
        uint32 maxGasIssuancePerBlock;
    }
}
          

contracts/shared/signal/ISignalService.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title ISignalService
/// @notice The SignalService contract serves as a secure cross-chain message
/// passing system. It defines methods for sending and verifying signals with
/// merkle proofs. The trust assumption is that the target chain has secure
/// access to the merkle root (such as Taiko injects it in the anchor
/// transaction). With this, verifying a signal is reduced to simply verifying
/// a merkle proof.
/// @custom:security-contact security@taiko.xyz
interface ISignalService {
    enum CacheOption {
        CACHE_NOTHING,
        CACHE_SIGNAL_ROOT,
        CACHE_STATE_ROOT,
        CACHE_BOTH
    }

    struct HopProof {
        /// @notice This hop's destination chain ID. If there is a next hop, this ID is the next
        /// hop's source chain ID.
        uint64 chainId;
        /// @notice The ID of a source chain block whose state root has been synced to the hop's
        /// destination chain.
        /// Note that this block ID must be greater than or equal to the block ID where the signal
        /// was sent on the source chain.
        uint64 blockId;
        /// @notice The state root or signal root of the source chain at the above blockId. This
        /// value has been synced to the destination chain.
        /// @dev To get both the blockId and the rootHash, apps should subscribe to the
        /// ChainDataSynced event or query `topBlockId` first using the source chain's ID and
        /// LibStrings.H_STATE_ROOT to get the most recent block ID synced, then call
        /// `getSyncedChainData` to read the synchronized data.
        bytes32 rootHash;
        /// @notice Options to cache either the state roots or signal roots of middle-hops to the
        /// current chain.
        CacheOption cacheOption;
        /// @notice The signal service's account proof. If this value is empty, then `rootHash` will
        /// be used as the signal root, otherwise, `rootHash` will be used as the state root.
        bytes[] accountProof;
        /// @notice The signal service's storage proof.
        bytes[] storageProof;
    }

    /// @notice Emitted when a remote chain's state root or signal root is
    /// synced locally as a signal.
    /// @param chainId The remote chainId.
    /// @param blockId The chain data's corresponding blockId.
    /// @param kind A value to mark the data type.
    /// @param data The remote data.
    /// @param signal The signal for this chain data.
    event ChainDataSynced(
        uint64 indexed chainId,
        uint64 indexed blockId,
        bytes32 indexed kind,
        bytes32 data,
        bytes32 signal
    );

    /// @notice Emitted when a signal is sent.
    /// @param app The address that initiated the signal.
    /// @param signal The signal (message) that was sent.
    /// @param slot The location in storage where this signal is stored.
    /// @param value The value of the signal.
    event SignalSent(address app, bytes32 signal, bytes32 slot, bytes32 value);

    /// @notice Emitted when an address is authorized or deauthorized.
    /// @param addr The address to be authorized or deauthorized.
    /// @param authorized True if authorized, false otherwise.
    event Authorized(address indexed addr, bool authorized);

    /// @notice Send a signal (message) by setting the storage slot to the same value as the signal
    /// itself.
    /// @param _signal The signal (message) to send.
    /// @return slot_ The location in storage where this signal is stored.
    function sendSignal(bytes32 _signal) external returns (bytes32 slot_);

    /// @notice Sync a data from a remote chain locally as a signal. The signal is calculated
    /// uniquely from chainId, kind, and data.
    /// @param _chainId The remote chainId.
    /// @param _kind A value to mark the data type.
    /// @param _blockId The chain data's corresponding blockId
    /// @param _chainData The remote data.
    /// @return signal_ The signal for this chain data.
    function syncChainData(
        uint64 _chainId,
        bytes32 _kind,
        uint64 _blockId,
        bytes32 _chainData
    )
        external
        returns (bytes32 signal_);

    /// @notice Verifies if a signal has been received on the target chain.
    /// @param _chainId The identifier for the source chain from which the
    /// signal originated.
    /// @param _app The address that initiated the signal.
    /// @param _signal The signal (message) to send.
    /// @param _proof Merkle proof that the signal was persisted on the
    /// source chain.
    /// @return numCacheOps_ The number of newly cached items.
    function proveSignalReceived(
        uint64 _chainId,
        address _app,
        bytes32 _signal,
        bytes calldata _proof
    )
        external
        returns (uint256 numCacheOps_);

    /// @notice Verifies if a signal has been received on the target chain.
    /// This is the "readonly" version of proveSignalReceived.
    /// @param _chainId The identifier for the source chain from which the
    /// signal originated.
    /// @param _app The address that initiated the signal.
    /// @param _signal The signal (message) to send.
    /// @param _proof Merkle proof that the signal was persisted on the
    /// source chain.
    function verifySignalReceived(
        uint64 _chainId,
        address _app,
        bytes32 _signal,
        bytes calldata _proof
    )
        external
        view;

    /// @notice Verifies if a particular signal has already been sent.
    /// @param _app The address that initiated the signal.
    /// @param _signal The signal (message) that was sent.
    /// @return true if the signal has been sent, otherwise false.
    function isSignalSent(address _app, bytes32 _signal) external view returns (bool);

    /// @notice Checks if a chain data has been synced.
    /// @param _chainId The remote chainId.
    /// @param _kind A value to mark the data type.
    /// @param _blockId The chain data's corresponding blockId
    /// @param _chainData The remote data.
    /// @return true if the data has been synced, otherwise false.
    function isChainDataSynced(
        uint64 _chainId,
        bytes32 _kind,
        uint64 _blockId,
        bytes32 _chainData
    )
        external
        view
        returns (bool);

    /// @notice Returns the given block's  chain data.
    /// @param _chainId Identifier of the chainId.
    /// @param _kind A value to mark the data type.
    /// @param _blockId The chain data's corresponding block id. If this value is 0, use the top
    /// block id.
    /// @return blockId_ The actual block id.
    /// @return chainData_ The synced chain data.
    function getSyncedChainData(
        uint64 _chainId,
        bytes32 _kind,
        uint64 _blockId
    )
        external
        view
        returns (uint64 blockId_, bytes32 chainData_);

    /// @notice Returns the data to be used for caching slot generation.
    /// @param _chainId Identifier of the chainId.
    /// @param _kind A value to mark the data type.
    /// @param _blockId The chain data's corresponding block id. If this value is 0, use the top
    /// block id.
    /// @return signal_ The signal used for caching slot creation.
    function signalForChainData(
        uint64 _chainId,
        bytes32 _kind,
        uint64 _blockId
    )
        external
        pure
        returns (bytes32 signal_);
}
          

contracts/layer2/based/IBlockHash.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title IBlockHash
/// @notice Interface for retrieving block hashes.
interface IBlockHash {
    /// @notice Retrieves the block hash for a given block ID.
    /// @param _blockId The ID of the block whose hash is being requested.
    /// @return The block hash of the specified block ID, or 0 if no hash is found.
    function getBlockHash(uint256 _blockId) external view returns (bytes32);
}
          

node_modules/@openzeppelin/contracts/proxy/beacon/IBeacon.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.0;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {BeaconProxy} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}
          

node_modules/@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.0;

import "../../interfaces/draft-IERC1822.sol";
import "../ERC1967/ERC1967Upgrade.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 *
 * _Available since v4.1._
 */
abstract contract UUPSUpgradeable is IERC1822Proxiable, ERC1967Upgrade {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
    address private immutable __self = address(this);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        require(address(this) != __self, "Function must be called through delegatecall");
        require(_getImplementation() == __self, "Function must be called through active proxy");
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
        _;
    }

    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
        return _IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeTo(address newImplementation) public virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data, true);
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeTo} and {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal override onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;
}
          

contracts/shared/common/AddressResolver.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "./IAddressManager.sol";
import "./IAddressResolver.sol";

/// @title AddressResolver
/// @notice See the documentation in {IAddressResolver}.
/// @custom:security-contact security@taiko.xyz
abstract contract AddressResolver is IAddressResolver, Initializable {
    /// @notice Address of the AddressManager.
    address public addressManager;
    uint256[49] private __gap;

    error RESOLVER_DENIED();
    error RESOLVER_INVALID_MANAGER();
    error RESOLVER_UNEXPECTED_CHAINID();
    error RESOLVER_ZERO_ADDR(uint64 chainId, bytes32 name);

    /// @dev Modifier that ensures the caller is the resolved address of a given
    /// name.
    /// @param _name The name to check against.
    modifier onlyFromNamed(bytes32 _name) {
        if (msg.sender != resolve(_name, true)) revert RESOLVER_DENIED();
        _;
    }

    /// @dev Modifier that ensures the caller is the resolved address of a given
    /// name, if the name is set.
    /// @param _name The name to check against.
    modifier onlyFromOptionalNamed(bytes32 _name) {
        address addr = resolve(_name, true);
        if (addr != address(0) && msg.sender != addr) revert RESOLVER_DENIED();
        _;
    }

    /// @dev Modifier that ensures the caller is a resolved address to either _name1 or _name2
    /// name.
    /// @param _name1 The first name to check against.
    /// @param _name2 The second name to check against.
    modifier onlyFromNamedEither(bytes32 _name1, bytes32 _name2) {
        if (msg.sender != resolve(_name1, true) && msg.sender != resolve(_name2, true)) {
            revert RESOLVER_DENIED();
        }
        _;
    }

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @inheritdoc IAddressResolver
    function resolve(bytes32 _name, bool _allowZeroAddress) public view virtual returns (address) {
        return _resolve(uint64(block.chainid), _name, _allowZeroAddress);
    }

    /// @inheritdoc IAddressResolver
    function resolve(
        uint64 _chainId,
        bytes32 _name,
        bool _allowZeroAddress
    )
        public
        view
        virtual
        returns (address)
    {
        return _resolve(_chainId, _name, _allowZeroAddress);
    }

    /// @dev Initialization method for setting up AddressManager reference.
    /// @param _addressManager Address of the AddressManager.
    function __AddressResolver_init(address _addressManager) internal virtual onlyInitializing {
        if (block.chainid > type(uint64).max) {
            revert RESOLVER_UNEXPECTED_CHAINID();
        }
        addressManager = _addressManager;
    }

    /// @dev Helper method to resolve name-to-address.
    /// @param _chainId The chainId of interest.
    /// @param _name Name whose address is to be resolved.
    /// @param _allowZeroAddress If set to true, does not throw if the resolved
    /// address is `address(0)`.
    /// @return addr_ Address associated with the given name on the specified
    /// chain.
    function _resolve(
        uint64 _chainId,
        bytes32 _name,
        bool _allowZeroAddress
    )
        internal
        view
        returns (address addr_)
    {
        addr_ = _getAddress(_chainId, _name);

        if (!_allowZeroAddress && addr_ == address(0)) {
            revert RESOLVER_ZERO_ADDR(_chainId, _name);
        }
    }

    function _getAddress(uint64 _chainId, bytes32 _name) internal view virtual returns (address) {
        address _addressManager = addressManager;
        if (_addressManager == address(0)) revert RESOLVER_INVALID_MANAGER();

        return IAddressManager(_addressManager).getAddress(_chainId, _name);
    }
}
          

contracts/layer2/based/Lib1559Math.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "@solady/src/utils/FixedPointMathLib.sol";
import "../../shared/common/LibMath.sol";

/// @title Lib1559Math
/// @notice Implements e^(x) based bonding curve for EIP-1559
/// @dev See https://ethresear.ch/t/make-eip-1559-more-like-an-amm-curve/9082 but some minor
/// difference as stated in docs/eip1559_on_l2.md.
/// @custom:security-contact security@taiko.xyz
library Lib1559Math {
    using LibMath for uint256;

    uint128 public constant MAX_EXP_INPUT = 135_305_999_368_893_231_588;

    error EIP1559_INVALID_PARAMS();

    function calc1559BaseFee(
        uint256 _gasTarget,
        uint64 _gasExcess,
        uint64 _gasIssuance,
        uint32 _parentGasUsed,
        uint64 _minGasExcess
    )
        internal
        pure
        returns (uint256 basefee_, uint64 gasExcess_)
    {
        // We always add the gas used by parent block to the gas excess
        // value as this has already happened
        uint256 excess = uint256(_gasExcess) + _parentGasUsed;
        excess = excess > _gasIssuance ? excess - _gasIssuance : 1;
        gasExcess_ = uint64(excess.max(_minGasExcess).min(type(uint64).max));

        // The base fee per gas used by this block is the spot price at the
        // bonding curve, regardless the actual amount of gas used by this
        // block, however, this block's gas used will affect the next
        // block's base fee.
        basefee_ = basefee(gasExcess_, _gasTarget);
    }

    /// @dev Returns the new gas excess that will keep the basefee the same.
    /// `_newGasTarget * ln(_newGasTarget / _target) + _gasExcess * _newGasTarget / _target`
    function adjustExcess(
        uint64 _gasExcess,
        uint64 _gasTarget,
        uint64 _newGasTarget
    )
        internal
        pure
        returns (uint64)
    {
        if (_gasTarget == 0) {
            return _newGasTarget;
        }

        uint256 f = FixedPointMathLib.WAD;
        uint256 ratio = f * _newGasTarget / _gasTarget;
        if (ratio > uint256(type(int256).max)) revert EIP1559_INVALID_PARAMS();

        int256 lnRatio = FixedPointMathLib.lnWad(int256(ratio)); // may be negative

        uint256 newGasExcess;

        assembly {
            // compute x = (_newGasTarget * lnRatio + _gasExcess * ratio)
            let x := add(mul(_newGasTarget, lnRatio), mul(_gasExcess, ratio))

            // If x < 0, set newGasExcess to 0, otherwise calculate newGasExcess = x / f
            switch slt(x, 0)
            case 1 { newGasExcess := 0 }
            default { newGasExcess := div(x, f) }
        }

        return uint64(newGasExcess.min(type(uint64).max));
    }

    /// @dev exp(_gasExcess / _gasTarget) / _gasTarget
    function basefee(uint256 _gasExcess, uint256 _gasTarget) internal pure returns (uint256) {
        uint256 fee = ethQty(_gasExcess, _gasTarget) / _gasTarget;
        return fee == 0 ? 1 : fee;
    }

    /// @dev exp(_gasExcess / _gasTarget)
    function ethQty(uint256 _gasExcess, uint256 _gasTarget) internal pure returns (uint256) {
        if (_gasTarget == 0) revert EIP1559_INVALID_PARAMS();

        uint256 input = FixedPointMathLib.WAD * _gasExcess / _gasTarget;
        if (input > MAX_EXP_INPUT) {
            input = MAX_EXP_INPUT;
        }
        return uint256(FixedPointMathLib.expWad(int256(input))) / FixedPointMathLib.WAD;
    }
}
          

contracts/layer2/based/LibL2Config.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title LibL2Config
library LibL2Config {
    struct Config {
        uint32 gasTargetPerL1Block;
        uint8 basefeeAdjustmentQuotient;
    }

    /// @notice Returns EIP1559 related configurations.
    /// @return config_ struct containing configuration parameters.
    function get() internal pure returns (Config memory config_) {
        // Assuming we sell 3x more blockspace than Ethereum: 15_000_000 * 4
        // Note that Brecht's concern is that this value may be too large.
        // We need to monitor L2 state growth and lower this value when necessary.
        config_.gasTargetPerL1Block = 60_000_000;
        config_.basefeeAdjustmentQuotient = 8;
    }
}
          

contracts/layer2/based/TaikoL2.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "../../shared/data/LibSharedData.sol";
import "../../shared/common/EssentialContract.sol";
import "../../shared/common/LibStrings.sol";
import "../../shared/common/LibAddress.sol";
import "../../shared/signal/ISignalService.sol";
import "./Lib1559Math.sol";
import "./LibL2Config.sol";
import "./IBlockHash.sol";

/// @title TaikoL2
/// @notice Taiko L2 is a smart contract that handles cross-layer message
/// verification and manages EIP-1559 gas pricing for Layer 2 (L2) operations.
/// It is used to anchor the latest L1 block details to L2 for cross-layer
/// communication, manage EIP-1559 parameters for gas pricing, and store
/// verified L1 block information.
/// @custom:security-contact security@taiko.xyz
contract TaikoL2 is EssentialContract, IBlockHash {
    using LibAddress for address;
    using SafeERC20 for IERC20;

    /// @notice Golden touch address is the only address that can do the anchor transaction.
    address public constant GOLDEN_TOUCH_ADDRESS = 0x0000777735367b36bC9B61C50022d9D0700dB4Ec;

    /// @notice Mapping from L2 block numbers to their block hashes. All L2 block hashes will
    /// be saved in this mapping.
    mapping(uint256 blockId => bytes32 blockHash) private _blockhashes;

    /// @notice A hash to check the integrity of public inputs.
    /// @dev Slot 2.
    bytes32 public publicInputHash;

    /// @notice The gas excess value used to calculate the base fee.
    /// @dev Slot 3.
    uint64 public parentGasExcess;

    /// @notice The last synced L1 block height.
    uint64 public lastSyncedBlock;
    uint64 public parentTimestamp;
    uint64 public parentGasTarget;

    /// @notice The L1's chain ID.
    uint64 public l1ChainId;

    uint256[46] private __gap;

    /// @notice Emitted when the latest L1 block details are anchored to L2.
    /// @param parentHash The hash of the parent block.
    /// @param parentGasExcess The gas excess value used to calculate the base fee.
    event Anchored(bytes32 parentHash, uint64 parentGasExcess);

    error L2_BASEFEE_MISMATCH();
    error L2_FORK_ERROR();
    error L2_INVALID_L1_CHAIN_ID();
    error L2_INVALID_L2_CHAIN_ID();
    error L2_INVALID_PARAM();
    error L2_INVALID_SENDER();
    error L2_PUBLIC_INPUT_HASH_MISMATCH();
    error L2_TOO_LATE();

    modifier onlyGoldenTouch() {
        if (msg.sender != GOLDEN_TOUCH_ADDRESS) revert L2_INVALID_SENDER();
        _;
    }

    /// @notice Initializes the contract.
    /// @param _owner The owner of this contract. msg.sender will be used if this value is zero.
    /// @param _rollupAddressManager The address of the {AddressManager} contract.
    /// @param _l1ChainId The ID of the base layer.
    /// @param _initialGasExcess The initial parentGasExcess.
    function init(
        address _owner,
        address _rollupAddressManager,
        uint64 _l1ChainId,
        uint64 _initialGasExcess
    )
        external
        initializer
    {
        __Essential_init(_owner, _rollupAddressManager);

        if (_l1ChainId == 0 || _l1ChainId == block.chainid) {
            revert L2_INVALID_L1_CHAIN_ID();
        }
        if (block.chainid <= 1 || block.chainid > type(uint64).max) {
            revert L2_INVALID_L2_CHAIN_ID();
        }

        if (block.number == 0) {
            // This is the case in real L2 genesis
        } else if (block.number == 1) {
            // This is the case in tests
            uint256 parentHeight = block.number - 1;
            _blockhashes[parentHeight] = blockhash(parentHeight);
        } else {
            revert L2_TOO_LATE();
        }

        l1ChainId = _l1ChainId;
        parentGasExcess = _initialGasExcess;
        (publicInputHash,) = _calcPublicInputHash(block.number);
    }

    /// @notice Anchors the latest L1 block details to L2 for cross-layer
    /// message verification.
    /// @dev This function can be called freely as the golden touch private key is publicly known,
    /// but the Taiko node guarantees the first transaction of each block is always this anchor
    /// transaction, and any subsequent calls will revert with L2_PUBLIC_INPUT_HASH_MISMATCH.
    /// @param _l1StateRoot The state root for the L1 block with id equals `_anchorBlockId`
    /// @param _l1BlockId The `anchorBlockId` value in this block's metadata.
    /// @param _parentGasUsed The gas used in the parent block.
    function anchor(
        bytes32, /*_l1BlockHash*/
        bytes32 _l1StateRoot,
        uint64 _l1BlockId,
        uint32 _parentGasUsed
    )
        external
        nonZeroValue(uint256(_l1StateRoot))
        nonZeroValue(uint256(_l1BlockId))
        onlyGoldenTouch
        nonReentrant
    {
        if (block.number >= ontakeForkHeight()) revert L2_FORK_ERROR();

        // Verify ancestor hashes
        uint256 parentId = block.number - 1;
        (bytes32 currentPublicInputHash, bytes32 newPublicInputHash) =
            _calcPublicInputHash(parentId);
        if (publicInputHash != currentPublicInputHash) revert L2_PUBLIC_INPUT_HASH_MISMATCH();

        // Verify the base fee per gas is correct
        (uint256 basefee, uint64 newGasExcess) = getBasefee(_l1BlockId, _parentGasUsed);

        if (!skipFeeCheck() && block.basefee != basefee) revert L2_BASEFEE_MISMATCH();

        if (_l1BlockId > lastSyncedBlock) {
            // Store the L1's state root as a signal to the local signal service to
            // allow for multi-hop bridging.
            ISignalService(resolve(LibStrings.B_SIGNAL_SERVICE, false)).syncChainData(
                l1ChainId, LibStrings.H_STATE_ROOT, _l1BlockId, _l1StateRoot
            );

            lastSyncedBlock = _l1BlockId;
        }

        // Update state variables
        bytes32 parentHash = blockhash(parentId);
        _blockhashes[parentId] = parentHash;

        publicInputHash = newPublicInputHash;
        parentGasExcess = newGasExcess;
        parentTimestamp = uint64(block.timestamp);

        emit Anchored(parentHash, newGasExcess);
    }

    function anchorV2(
        uint64 _anchorBlockId,
        bytes32 _anchorStateRoot,
        uint32 _parentGasUsed,
        LibSharedData.BaseFeeConfig calldata _baseFeeConfig
    )
        external
        nonZeroValue(uint256(_anchorStateRoot))
        nonZeroValue(uint256(_anchorBlockId))
        nonZeroValue(uint256(_baseFeeConfig.gasIssuancePerSecond))
        nonZeroValue(uint256(_baseFeeConfig.adjustmentQuotient))
        onlyGoldenTouch
        nonReentrant
    {
        if (block.number < ontakeForkHeight()) revert L2_FORK_ERROR();

        uint256 parentId = block.number - 1;

        // Verify ancestor hashes
        {
            (bytes32 currentPublicInputHash, bytes32 newPublicInputHash) =
                _calcPublicInputHash(parentId);
            if (publicInputHash != currentPublicInputHash) revert L2_PUBLIC_INPUT_HASH_MISMATCH();
            publicInputHash = newPublicInputHash;
        }

        // Check if the gas settings has changed
        {
            uint64 newGasTarget =
                uint64(_baseFeeConfig.gasIssuancePerSecond) * _baseFeeConfig.adjustmentQuotient;

            if (parentGasTarget != newGasTarget) {
                if (parentGasTarget != 0) {
                    parentGasExcess = adjustExcess(parentGasExcess, parentGasTarget, newGasTarget);
                }
                parentGasTarget = newGasTarget;
            }
        }

        // Verify the base fee per gas is correct
        {
            (uint256 basefee, uint64 newGasExcess) = calculateBaseFee(
                _baseFeeConfig,
                uint64(block.timestamp - parentTimestamp),
                parentGasExcess,
                _parentGasUsed
            );

            if (!skipFeeCheck() && block.basefee != basefee) revert L2_BASEFEE_MISMATCH();
            parentGasExcess = newGasExcess;
        }

        if (_anchorBlockId > lastSyncedBlock) {
            // Store the L1's state root as a signal to the local signal service to
            // allow for multi-hop bridging.
            ISignalService(resolve(LibStrings.B_SIGNAL_SERVICE, false)).syncChainData(
                l1ChainId, LibStrings.H_STATE_ROOT, _anchorBlockId, _anchorStateRoot
            );

            lastSyncedBlock = _anchorBlockId;
        }

        // Update state variables
        bytes32 parentHash = blockhash(parentId);
        _blockhashes[parentId] = parentHash;
        parentTimestamp = uint64(block.timestamp);

        emit Anchored(parentHash, parentGasExcess);
    }

    /// @notice Withdraw token or Ether from this address
    /// @param _token Token address or address(0) if Ether.
    /// @param _to Withdraw to address.
    function withdraw(
        address _token,
        address _to
    )
        external
        whenNotPaused
        onlyFromOwnerOrNamed(LibStrings.B_WITHDRAWER)
        nonReentrant
    {
        if (_to == address(0)) revert L2_INVALID_PARAM();
        if (_token == address(0)) {
            _to.sendEtherAndVerify(address(this).balance);
        } else {
            IERC20(_token).safeTransfer(_to, IERC20(_token).balanceOf(address(this)));
        }
    }

    /// @notice Gets the basefee and gas excess using EIP-1559 configuration for
    /// the given parameters.
    /// @dev This function will deprecate after Ontake fork, node/client shall use calculateBaseFee
    /// instead for base fee prediction.
    /// @param _anchorBlockId The synced L1 height in the next Taiko block
    /// @param _parentGasUsed Gas used in the parent block.
    /// @return basefee_ The calculated EIP-1559 base fee per gas.
    /// @return parentGasExcess_ The new parentGasExcess value.
    function getBasefee(
        uint64 _anchorBlockId,
        uint32 _parentGasUsed
    )
        public
        view
        returns (uint256 basefee_, uint64 parentGasExcess_)
    {
        LibL2Config.Config memory config = getConfig();

        (basefee_, parentGasExcess_) = Lib1559Math.calc1559BaseFee(
            uint256(config.gasTargetPerL1Block) * config.basefeeAdjustmentQuotient,
            parentGasExcess,
            uint64(_anchorBlockId - lastSyncedBlock) * config.gasTargetPerL1Block,
            _parentGasUsed,
            0
        );
    }

    /// @inheritdoc IBlockHash
    function getBlockHash(uint256 _blockId) public view returns (bytes32) {
        if (_blockId >= block.number) return 0;
        if (_blockId + 256 >= block.number) return blockhash(_blockId);
        return _blockhashes[_blockId];
    }

    /// @notice Returns EIP1559 related configurations.
    /// @return config_ struct containing configuration parameters.
    function getConfig() public view virtual returns (LibL2Config.Config memory) {
        return LibL2Config.get();
    }

    /// @notice Returns the new gas excess that will keep the basefee the same.
    /// @param _currGasExcess The current gas excess value.
    /// @param _currGasTarget The current gas target.
    /// @param _newGasTarget The new gas target.
    /// @return newGasExcess_ The new gas excess value.
    function adjustExcess(
        uint64 _currGasExcess,
        uint64 _currGasTarget,
        uint64 _newGasTarget
    )
        public
        pure
        returns (uint64 newGasExcess_)
    {
        return Lib1559Math.adjustExcess(_currGasExcess, _currGasTarget, _newGasTarget);
    }

    /// @notice Tells if we need to validate basefee (for simulation).
    /// @return Returns true to skip checking basefee mismatch.
    function skipFeeCheck() public pure virtual returns (bool) {
        return false;
    }

    function ontakeForkHeight() public pure virtual returns (uint64) {
        return 0;
    }

    /// @notice Calculates the basefee and the new gas excess value based on parent gas used and gas
    /// excess.
    /// @param _baseFeeConfig The base fee config object.
    /// @param _blocktime The time between this block and the parent block.
    /// @param _parentGasExcess The current gas excess value.
    /// @param _parentGasUsed Total gas used by the parent block.
    /// @return basefee_ Next block's base fee.
    /// @return parentGasExcess_ The new gas excess value.
    function calculateBaseFee(
        LibSharedData.BaseFeeConfig calldata _baseFeeConfig,
        uint64 _blocktime,
        uint64 _parentGasExcess,
        uint32 _parentGasUsed
    )
        public
        pure
        returns (uint256 basefee_, uint64 parentGasExcess_)
    {
        uint64 gasIssuance = _blocktime * _baseFeeConfig.gasIssuancePerSecond;
        if (
            _baseFeeConfig.maxGasIssuancePerBlock != 0
                && gasIssuance > _baseFeeConfig.maxGasIssuancePerBlock
        ) {
            gasIssuance = _baseFeeConfig.maxGasIssuancePerBlock;
        }

        uint256 gasTarget =
            uint256(_baseFeeConfig.gasIssuancePerSecond) * _baseFeeConfig.adjustmentQuotient;

        return Lib1559Math.calc1559BaseFee(
            gasTarget, _parentGasExcess, gasIssuance, _parentGasUsed, _baseFeeConfig.minGasExcess
        );
    }

    function _calcPublicInputHash(uint256 _blockId)
        private
        view
        returns (bytes32 publicInputHashOld, bytes32 publicInputHashNew)
    {
        bytes32[256] memory inputs;

        // Unchecked is safe because it cannot overflow.
        unchecked {
            // Put the previous 255 blockhashes (excluding the parent's) into a
            // ring buffer.
            for (uint256 i; i < 255 && _blockId >= i + 1; ++i) {
                uint256 j = _blockId - i - 1;
                inputs[j % 255] = blockhash(j);
            }
        }

        inputs[255] = bytes32(block.chainid);

        assembly {
            publicInputHashOld := keccak256(inputs, 8192 /*mul(256, 32)*/ )
        }

        inputs[_blockId % 255] = blockhash(_blockId);
        assembly {
            publicInputHashNew := keccak256(inputs, 8192 /*mul(256, 32)*/ )
        }
    }
}
          

contracts/shared/common/EssentialContract.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import "./AddressResolver.sol";

/// @title EssentialContract
/// @custom:security-contact security@taiko.xyz
abstract contract EssentialContract is UUPSUpgradeable, Ownable2StepUpgradeable, AddressResolver {
    uint8 private constant _FALSE = 1;
    uint8 private constant _TRUE = 2;

    /// @dev Slot 1.
    uint8 private __reentry;
    uint8 private __paused;
    uint64 public lastUnpausedAt;

    uint256[49] private __gap;

    /// @notice Emitted when the contract is paused.
    /// @param account The account that paused the contract.
    event Paused(address account);

    /// @notice Emitted when the contract is unpaused.
    /// @param account The account that unpaused the contract.
    event Unpaused(address account);

    error INVALID_PAUSE_STATUS();
    error FUNC_NOT_IMPLEMENTED();
    error REENTRANT_CALL();
    error ZERO_ADDRESS();
    error ZERO_VALUE();

    /// @dev Modifier that ensures the caller is the owner or resolved address of a given name.
    /// @param _name The name to check against.
    modifier onlyFromOwnerOrNamed(bytes32 _name) {
        if (msg.sender != owner() && msg.sender != resolve(_name, true)) revert RESOLVER_DENIED();
        _;
    }

    modifier notImplemented() {
        revert FUNC_NOT_IMPLEMENTED();
        _;
    }

    modifier nonReentrant() {
        if (_loadReentryLock() == _TRUE) revert REENTRANT_CALL();
        _storeReentryLock(_TRUE);
        _;
        _storeReentryLock(_FALSE);
    }

    modifier whenPaused() {
        if (!paused()) revert INVALID_PAUSE_STATUS();
        _;
    }

    modifier whenNotPaused() {
        if (paused()) revert INVALID_PAUSE_STATUS();
        _;
    }

    modifier nonZeroAddr(address _addr) {
        if (_addr == address(0)) revert ZERO_ADDRESS();
        _;
    }

    modifier nonZeroValue(uint256 _value) {
        if (_value == 0) revert ZERO_VALUE();
        _;
    }

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @notice Pauses the contract.
    function pause() public virtual {
        _pause();
        // We call the authorize function here to avoid:
        // Warning (5740): Unreachable code.
        _authorizePause(msg.sender, true);
    }

    /// @notice Unpauses the contract.
    function unpause() public virtual {
        _unpause();
        // We call the authorize function here to avoid:
        // Warning (5740): Unreachable code.
        _authorizePause(msg.sender, false);
    }

    function impl() public view returns (address) {
        return _getImplementation();
    }

    /// @notice Returns true if the contract is paused, and false otherwise.
    /// @return true if paused, false otherwise.
    function paused() public view returns (bool) {
        return __paused == _TRUE;
    }

    function inNonReentrant() public view returns (bool) {
        return _loadReentryLock() == _TRUE;
    }

    /// @notice Initializes the contract.
    /// @param _owner The owner of this contract. msg.sender will be used if this value is zero.
    /// @param _addressManager The address of the {AddressManager} contract.
    function __Essential_init(
        address _owner,
        address _addressManager
    )
        internal
        nonZeroAddr(_addressManager)
    {
        __Essential_init(_owner);
        __AddressResolver_init(_addressManager);
    }

    function __Essential_init(address _owner) internal virtual onlyInitializing {
        __Context_init();
        _transferOwnership(_owner == address(0) ? msg.sender : _owner);
        __paused = _FALSE;
    }

    function _pause() internal whenNotPaused {
        __paused = _TRUE;
        emit Paused(msg.sender);
    }

    function _unpause() internal whenPaused {
        __paused = _FALSE;
        lastUnpausedAt = uint64(block.timestamp);
        emit Unpaused(msg.sender);
    }

    function _authorizeUpgrade(address) internal virtual override onlyOwner { }

    function _authorizePause(address, bool) internal virtual onlyOwner { }

    // Stores the reentry lock
    function _storeReentryLock(uint8 _reentry) internal virtual {
        __reentry = _reentry;
    }

    // Loads the reentry lock
    function _loadReentryLock() internal view virtual returns (uint8 reentry_) {
        reentry_ = __reentry;
    }
}
          

contracts/shared/common/IAddressManager.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title IAddressManager
/// @notice Manages a mapping of (chainId, name) pairs to Ethereum addresses.
/// @custom:security-contact security@taiko.xyz
interface IAddressManager {
    /// @notice Gets the address mapped to a specific chainId-name pair.
    /// @dev Note that in production, this method shall be a pure function
    /// without any storage access.
    /// @param _chainId The chainId for which the address needs to be fetched.
    /// @param _name The name for which the address needs to be fetched.
    /// @return Address associated with the chainId-name pair.
    function getAddress(uint64 _chainId, bytes32 _name) external view returns (address);
}
          

contracts/shared/common/IAddressResolver.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title IAddressResolver
/// @notice This contract acts as a bridge for name-to-address resolution.
/// It delegates the resolution to the AddressManager. By separating the logic,
/// we can maintain flexibility in address management without affecting the
/// resolving process.
/// @dev Note that the address manager should be changed using upgradability, there
/// is no setAddressManager() function to guarantee atomicity across all
/// contracts that are resolvers.
/// @custom:security-contact security@taiko.xyz
interface IAddressResolver {
    /// @notice Resolves a name to its address deployed on this chain.
    /// @param _name Name whose address is to be resolved.
    /// @param _allowZeroAddress If set to true, does not throw if the resolved
    /// address is `address(0)`.
    /// @return Address associated with the given name.
    function resolve(bytes32 _name, bool _allowZeroAddress) external view returns (address);

    /// @notice Resolves a name to its address deployed on a specified chain.
    /// @param _chainId The chainId of interest.
    /// @param _name Name whose address is to be resolved.
    /// @param _allowZeroAddress If set to true, does not throw if the resolved
    /// address is `address(0)`.
    /// @return Address associated with the given name on the specified
    /// chain.
    function resolve(
        uint64 _chainId,
        bytes32 _name,
        bool _allowZeroAddress
    )
        external
        view
        returns (address);
}
          

contracts/shared/common/LibAddress.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import "@openzeppelin/contracts/interfaces/IERC1271.sol";

/// @title LibAddress
/// @dev Provides utilities for address-related operations.
/// @custom:security-contact security@taiko.xyz
library LibAddress {
    error ETH_TRANSFER_FAILED();

    /// @dev Sends Ether to the specified address. This method will not revert even if sending ether
    /// fails.
    /// This function is inspired by
    /// https://github.com/nomad-xyz/ExcessivelySafeCall/blob/main/src/ExcessivelySafeCall.sol
    /// @param _to The recipient address.
    /// @param _amount The amount of Ether to send in wei.
    /// @param _gasLimit The max amount gas to pay for this transaction.
    /// @return success_ true if the call is successful, false otherwise.
    function sendEther(
        address _to,
        uint256 _amount,
        uint256 _gasLimit,
        bytes memory _calldata
    )
        internal
        returns (bool success_)
    {
        // Check for zero-address transactions
        if (_to == address(0)) revert ETH_TRANSFER_FAILED();
        // dispatch message to recipient
        // by assembly calling "handle" function
        // we call via assembly to avoid memcopying a very large returndata
        // returned by a malicious contract
        assembly {
            success_ :=
                call(
                    _gasLimit, // gas
                    _to, // recipient
                    _amount, // ether value
                    add(_calldata, 0x20), // inloc
                    mload(_calldata), // inlen
                    0, // outloc
                    0 // outlen
                )
        }
    }

    /// @dev Sends Ether to the specified address. This method will revert if sending ether fails.
    /// @param _to The recipient address.
    /// @param _amount The amount of Ether to send in wei.
    /// @param _gasLimit The max amount gas to pay for this transaction.
    function sendEtherAndVerify(address _to, uint256 _amount, uint256 _gasLimit) internal {
        if (_amount == 0) return;
        if (!sendEther(_to, _amount, _gasLimit, "")) {
            revert ETH_TRANSFER_FAILED();
        }
    }

    /// @dev Sends Ether to the specified address. This method will revert if sending ether fails.
    /// @param _to The recipient address.
    /// @param _amount The amount of Ether to send in wei.
    function sendEtherAndVerify(address _to, uint256 _amount) internal {
        sendEtherAndVerify(_to, _amount, gasleft());
    }

    function supportsInterface(
        address _addr,
        bytes4 _interfaceId
    )
        internal
        view
        returns (bool result_)
    {
        if (!Address.isContract(_addr)) return false;

        try IERC165(_addr).supportsInterface(_interfaceId) returns (bool _result) {
            result_ = _result;
        } catch { }
    }
}
          

contracts/shared/common/LibMath.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title LibMath
/// @dev This library offers additional math functions for uint256.
/// @custom:security-contact security@taiko.xyz
library LibMath {
    /// @dev Returns the smaller of the two given values.
    /// @param _a The first number to compare.
    /// @param _b The second number to compare.
    /// @return The smaller of the two numbers.
    function min(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return _a > _b ? _b : _a;
    }

    /// @dev Returns the larger of the two given values.
    /// @param _a The first number to compare.
    /// @param _b The second number to compare.
    /// @return The larger of the two numbers.
    function max(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return _a > _b ? _a : _b;
    }
}
          

contracts/shared/common/LibStrings.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;

/// @title LibStrings
/// @custom:security-contact security@taiko.xyz
library LibStrings {
    bytes32 internal constant B_AUTOMATA_DCAP_ATTESTATION = bytes32("automata_dcap_attestation");
    bytes32 internal constant B_BLOCK_PROPOSER = bytes32("block_proposer");
    bytes32 internal constant B_BRIDGE = bytes32("bridge");
    bytes32 internal constant B_BRIDGE_WATCHDOG = bytes32("bridge_watchdog");
    bytes32 internal constant B_BRIDGED_ERC1155 = bytes32("bridged_erc1155");
    bytes32 internal constant B_BRIDGED_ERC20 = bytes32("bridged_erc20");
    bytes32 internal constant B_BRIDGED_ERC721 = bytes32("bridged_erc721");
    bytes32 internal constant B_CHAIN_WATCHDOG = bytes32("chain_watchdog");
    bytes32 internal constant B_ERC1155_VAULT = bytes32("erc1155_vault");
    bytes32 internal constant B_ERC20_VAULT = bytes32("erc20_vault");
    bytes32 internal constant B_ERC721_VAULT = bytes32("erc721_vault");
    bytes32 internal constant B_PROVER_ASSIGNMENT = bytes32("PROVER_ASSIGNMENT");
    bytes32 internal constant B_PROVER_SET = bytes32("prover_set");
    bytes32 internal constant B_QUOTA_MANAGER = bytes32("quota_manager");
    bytes32 internal constant B_SGX_WATCHDOG = bytes32("sgx_watchdog");
    bytes32 internal constant B_SIGNAL_SERVICE = bytes32("signal_service");
    bytes32 internal constant B_SP1_REMOTE_VERIFIER = bytes32("sp1_remote_verifier");
    bytes32 internal constant B_TAIKO = bytes32("taiko");
    bytes32 internal constant B_TAIKO_TOKEN = bytes32("taiko_token");
    bytes32 internal constant B_TIER_GUARDIAN = bytes32("tier_guardian");
    bytes32 internal constant B_TIER_GUARDIAN_MINORITY = bytes32("tier_guardian_minority");
    bytes32 internal constant B_TIER_ROUTER = bytes32("tier_router");
    bytes32 internal constant B_TIER_SGX = bytes32("tier_sgx");
    bytes32 internal constant B_TIER_TDX = bytes32("tier_tdx");
    bytes32 internal constant B_TIER_TEE_ANY = bytes32("tier_tee_any");
    bytes32 internal constant B_TIER_ZKVM_RISC0 = bytes32("tier_zkvm_risc0");
    bytes32 internal constant B_TIER_ZKVM_SP1 = bytes32("tier_zkvm_sp1");
    bytes32 internal constant B_TIER_ZKVM_ANY = bytes32("tier_zkvm_any");
    bytes32 internal constant B_TIER_ZKVM_AND_TEE = bytes32("tier_zkvm_and_tee");
    bytes32 internal constant B_RISCZERO_GROTH16_VERIFIER = bytes32("risc0_groth16_verifier");
    bytes32 internal constant B_WITHDRAWER = bytes32("withdrawer");
    bytes32 internal constant H_RETURN_LIVENESS_BOND = keccak256("RETURN_LIVENESS_BOND");
    bytes32 internal constant H_SIGNAL_ROOT = keccak256("SIGNAL_ROOT");
    bytes32 internal constant H_STATE_ROOT = keccak256("STATE_ROOT");
}
          

node_modules/@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.0;

import "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    function __Ownable2Step_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable2Step_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}
          

node_modules/@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal onlyInitializing {
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal onlyInitializing {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}
          

node_modules/@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}
          

node_modules/@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
          

node_modules/@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}
          

node_modules/@openzeppelin/contracts/interfaces/IERC1271.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
          

node_modules/@openzeppelin/contracts/interfaces/IERC1967.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.0;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 *
 * _Available since v4.8.3._
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}
          

node_modules/@openzeppelin/contracts/interfaces/draft-IERC1822.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.0;

/**
 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}
          

node_modules/@openzeppelin/contracts/proxy/ERC1967/ERC1967Upgrade.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)

pragma solidity ^0.8.2;

import "../beacon/IBeacon.sol";
import "../../interfaces/IERC1967.sol";
import "../../interfaces/draft-IERC1822.sol";
import "../../utils/Address.sol";
import "../../utils/StorageSlot.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 *
 * _Available since v4.1._
 */
abstract contract ERC1967Upgrade is IERC1967 {
    // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
    bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev Returns the current implementation address.
     */
    function _getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
        StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Perform implementation upgrade
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeTo(address newImplementation) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);
    }

    /**
     * @dev Perform implementation upgrade with additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {
        _upgradeTo(newImplementation);
        if (data.length > 0 || forceCall) {
            Address.functionDelegateCall(newImplementation, data);
        }
    }

    /**
     * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal {
        // Upgrades from old implementations will perform a rollback test. This test requires the new
        // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
        // this special case will break upgrade paths from old UUPS implementation to new ones.
        if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
            _setImplementation(newImplementation);
        } else {
            try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
            } catch {
                revert("ERC1967Upgrade: new implementation is not UUPS");
            }
            _upgradeToAndCall(newImplementation, data, forceCall);
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     */
    function _getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        require(newAdmin != address(0), "ERC1967: new admin is the zero address");
        StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {AdminChanged} event.
     */
    function _changeAdmin(address newAdmin) internal {
        emit AdminChanged(_getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
     */
    bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function _getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
        require(
            Address.isContract(IBeacon(newBeacon).implementation()),
            "ERC1967: beacon implementation is not a contract"
        );
        StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
    }

    /**
     * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
     * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
     *
     * Emits a {BeaconUpgraded} event.
     */
    function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);
        if (data.length > 0 || forceCall) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        }
    }
}
          

node_modules/@openzeppelin/contracts/token/ERC20/IERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
          

node_modules/@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
          

node_modules/@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}
          

node_modules/@openzeppelin/contracts/utils/Address.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
          

node_modules/@openzeppelin/contracts/utils/StorageSlot.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}
          

node_modules/@openzeppelin/contracts/utils/introspection/IERC165.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
          

node_modules/solady/src/utils/FixedPointMathLib.sol

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if mul(y, gt(x, div(not(0), y))) {
                mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
            if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2Ï€.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2Ï€.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            int256 wad = int256(WAD);
            int256 p = x;
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2Ï€.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `result` as `p0` to save gas.
            result := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    result :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(
                                mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
                                div(sub(result, r), t)
                            ),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                result := div(result, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(result, lt(mm, result)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            result :=
                mul(
                    or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        result = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                result := add(result, 1)
                if iszero(result) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { result := mul(result, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(sar(255, x), add(sar(255, x), x))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(mul(xor(sub(y, x), sub(x, y)), gt(x, y)), sub(y, x))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) {
            t = ~t;
            begin = ~begin;
            end = ~end;
        }
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) {
            t = int256(~uint256(t));
            begin = int256(~uint256(begin));
            end = int256(~uint256(end));
        }
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b) - uint256(a),
                uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a) - uint256(b),
                uint256(t) - uint256(begin), uint256(end) - uint256(begin)));
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}
          

Compiler Settings

{"viaIR":false,"remappings":["@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/","openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/","@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/","openzeppelin/contracts/=node_modules/@openzeppelin/contracts/","@risc0/contracts/=node_modules/risc0-ethereum/contracts/src/","@solady/=node_modules/solady/","@optimism/=node_modules/optimism/","@sp1-contracts/=node_modules/sp1-contracts/contracts/","forge-std/=node_modules/forge-std/","ds-test/=node_modules/ds-test/src/","@p256-verifier/contracts/=node_modules/p256-verifier/src/","optimism/=node_modules/optimism/","p256-verifier/=node_modules/p256-verifier/","risc0-ethereum/=node_modules/risc0-ethereum/","solady/=node_modules/solady/","sp1-contracts/=node_modules/sp1-contracts/"],"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers","metadata"]}},"optimizer":{"runs":200,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{},"evmVersion":"shanghai"}
              

Contract ABI

[{"type":"error","name":"EIP1559_INVALID_PARAMS","inputs":[]},{"type":"error","name":"ETH_TRANSFER_FAILED","inputs":[]},{"type":"error","name":"FUNC_NOT_IMPLEMENTED","inputs":[]},{"type":"error","name":"INVALID_PAUSE_STATUS","inputs":[]},{"type":"error","name":"L2_BASEFEE_MISMATCH","inputs":[]},{"type":"error","name":"L2_FORK_ERROR","inputs":[]},{"type":"error","name":"L2_INVALID_L1_CHAIN_ID","inputs":[]},{"type":"error","name":"L2_INVALID_L2_CHAIN_ID","inputs":[]},{"type":"error","name":"L2_INVALID_PARAM","inputs":[]},{"type":"error","name":"L2_INVALID_SENDER","inputs":[]},{"type":"error","name":"L2_PUBLIC_INPUT_HASH_MISMATCH","inputs":[]},{"type":"error","name":"L2_TOO_LATE","inputs":[]},{"type":"error","name":"REENTRANT_CALL","inputs":[]},{"type":"error","name":"RESOLVER_DENIED","inputs":[]},{"type":"error","name":"RESOLVER_INVALID_MANAGER","inputs":[]},{"type":"error","name":"RESOLVER_UNEXPECTED_CHAINID","inputs":[]},{"type":"error","name":"RESOLVER_ZERO_ADDR","inputs":[{"type":"uint64","name":"chainId","internalType":"uint64"},{"type":"bytes32","name":"name","internalType":"bytes32"}]},{"type":"error","name":"ZERO_ADDRESS","inputs":[]},{"type":"error","name":"ZERO_VALUE","inputs":[]},{"type":"event","name":"AdminChanged","inputs":[{"type":"address","name":"previousAdmin","internalType":"address","indexed":false},{"type":"address","name":"newAdmin","internalType":"address","indexed":false}],"anonymous":false},{"type":"event","name":"Anchored","inputs":[{"type":"bytes32","name":"parentHash","internalType":"bytes32","indexed":false},{"type":"uint64","name":"parentGasExcess","internalType":"uint64","indexed":false}],"anonymous":false},{"type":"event","name":"BeaconUpgraded","inputs":[{"type":"address","name":"beacon","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"Initialized","inputs":[{"type":"uint8","name":"version","internalType":"uint8","indexed":false}],"anonymous":false},{"type":"event","name":"OwnershipTransferStarted","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"Paused","inputs":[{"type":"address","name":"account","internalType":"address","indexed":false}],"anonymous":false},{"type":"event","name":"Unpaused","inputs":[{"type":"address","name":"account","internalType":"address","indexed":false}],"anonymous":false},{"type":"event","name":"Upgraded","inputs":[{"type":"address","name":"implementation","internalType":"address","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"GOLDEN_TOUCH_ADDRESS","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"acceptOwnership","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"addressManager","inputs":[]},{"type":"function","stateMutability":"pure","outputs":[{"type":"uint64","name":"newGasExcess_","internalType":"uint64"}],"name":"adjustExcess","inputs":[{"type":"uint64","name":"_currGasExcess","internalType":"uint64"},{"type":"uint64","name":"_currGasTarget","internalType":"uint64"},{"type":"uint64","name":"_newGasTarget","internalType":"uint64"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"anchor","inputs":[{"type":"bytes32","name":"","internalType":"bytes32"},{"type":"bytes32","name":"_l1StateRoot","internalType":"bytes32"},{"type":"uint64","name":"_l1BlockId","internalType":"uint64"},{"type":"uint32","name":"_parentGasUsed","internalType":"uint32"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"anchorV2","inputs":[{"type":"uint64","name":"_anchorBlockId","internalType":"uint64"},{"type":"bytes32","name":"_anchorStateRoot","internalType":"bytes32"},{"type":"uint32","name":"_parentGasUsed","internalType":"uint32"},{"type":"tuple","name":"_baseFeeConfig","internalType":"struct LibSharedData.BaseFeeConfig","components":[{"type":"uint8","name":"adjustmentQuotient","internalType":"uint8"},{"type":"uint8","name":"sharingPctg","internalType":"uint8"},{"type":"uint32","name":"gasIssuancePerSecond","internalType":"uint32"},{"type":"uint64","name":"minGasExcess","internalType":"uint64"},{"type":"uint32","name":"maxGasIssuancePerBlock","internalType":"uint32"}]}]},{"type":"function","stateMutability":"pure","outputs":[{"type":"uint256","name":"basefee_","internalType":"uint256"},{"type":"uint64","name":"parentGasExcess_","internalType":"uint64"}],"name":"calculateBaseFee","inputs":[{"type":"tuple","name":"_baseFeeConfig","internalType":"struct LibSharedData.BaseFeeConfig","components":[{"type":"uint8","name":"adjustmentQuotient","internalType":"uint8"},{"type":"uint8","name":"sharingPctg","internalType":"uint8"},{"type":"uint32","name":"gasIssuancePerSecond","internalType":"uint32"},{"type":"uint64","name":"minGasExcess","internalType":"uint64"},{"type":"uint32","name":"maxGasIssuancePerBlock","internalType":"uint32"}]},{"type":"uint64","name":"_blocktime","internalType":"uint64"},{"type":"uint64","name":"_parentGasExcess","internalType":"uint64"},{"type":"uint32","name":"_parentGasUsed","internalType":"uint32"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"basefee_","internalType":"uint256"},{"type":"uint64","name":"parentGasExcess_","internalType":"uint64"}],"name":"getBasefee","inputs":[{"type":"uint64","name":"_anchorBlockId","internalType":"uint64"},{"type":"uint32","name":"_parentGasUsed","internalType":"uint32"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"getBlockHash","inputs":[{"type":"uint256","name":"_blockId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"tuple","name":"","internalType":"struct LibL2Config.Config","components":[{"type":"uint32","name":"gasTargetPerL1Block","internalType":"uint32"},{"type":"uint8","name":"basefeeAdjustmentQuotient","internalType":"uint8"}]}],"name":"getConfig","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"impl","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"inNonReentrant","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"init","inputs":[{"type":"address","name":"_owner","internalType":"address"},{"type":"address","name":"_rollupAddressManager","internalType":"address"},{"type":"uint64","name":"_l1ChainId","internalType":"uint64"},{"type":"uint64","name":"_initialGasExcess","internalType":"uint64"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"l1ChainId","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"lastSyncedBlock","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"lastUnpausedAt","inputs":[]},{"type":"function","stateMutability":"pure","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"ontakeForkHeight","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"parentGasExcess","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"parentGasTarget","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint64","name":"","internalType":"uint64"}],"name":"parentTimestamp","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"pause","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"paused","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"pendingOwner","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"proxiableUUID","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bytes32","name":"","internalType":"bytes32"}],"name":"publicInputHash","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"resolve","inputs":[{"type":"uint64","name":"_chainId","internalType":"uint64"},{"type":"bytes32","name":"_name","internalType":"bytes32"},{"type":"bool","name":"_allowZeroAddress","internalType":"bool"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"resolve","inputs":[{"type":"bytes32","name":"_name","internalType":"bytes32"},{"type":"bool","name":"_allowZeroAddress","internalType":"bool"}]},{"type":"function","stateMutability":"pure","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"skipFeeCheck","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"unpause","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"upgradeTo","inputs":[{"type":"address","name":"newImplementation","internalType":"address"}]},{"type":"function","stateMutability":"payable","outputs":[],"name":"upgradeToAndCall","inputs":[{"type":"address","name":"newImplementation","internalType":"address"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"withdraw","inputs":[{"type":"address","name":"_token","internalType":"address"},{"type":"address","name":"_to","internalType":"address"}]}]
              

Contract Creation Code

0x60a060405230608052348015610013575f5ffd5b5061001c610029565b610024610029565b6100e5565b5f54610100900460ff16156100945760405162461bcd60e51b815260206004820152602760248201527f496e697469616c697a61626c653a20636f6e747261637420697320696e697469604482015266616c697a696e6760c81b606482015260840160405180910390fd5b5f5460ff908116146100e3575f805460ff191660ff9081179091556040519081527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b565b608051612eef6101195f395f81816106a0015281816106e901528181610790015281816107d0015261084b0152612eef5ff3fe6080604052600436106101fc575f3560e01c80638456cb5911610113578063da69d3db1161009d578063e902461a1161006d578063e902461a146105cd578063ee82ac5e146105ec578063f2fde38b1461060b578063f940e3851461062a578063fd85eb2d14610649575f5ffd5b8063da69d3db14610557578063dac5df7814610576578063e07baba61461058b578063e30c3978146105b0575f5ffd5b8063a7137c0f116100e3578063a7137c0f1461047f578063a7e022d1146104a5578063a86f9d9e146104e1578063b8c7b30c14610500578063c3f909d41461051f575f5ffd5b80638456cb59146104155780638abf6077146104295780638da5cb5b1461043d5780639ee512f21461045a575f5ffd5b80633eb6b8cf11610194578063539b8ade11610164578063539b8ade146103885780635950f9f1146103ae5780635c975abb146103cd578063715018a6146103ed57806379ba509714610401575f5ffd5b80633eb6b8cf146103205780633f4ba83a1461033f5780634f1ef2861461035357806352d1902d14610366575f5ffd5b806333d5ac9b116101cf57806333d5ac9b1461028d578063356aec04146102b35780633659cfe6146102c85780633ab76e9f146102e9575f5ffd5b806312622e5b14610200578063136dc4a81461023c5780632f9804731461025b5780633075db5614610279575b5f5ffd5b34801561020b575f5ffd5b5060fe5461021f906001600160401b031681565b6040516001600160401b0390911681526020015b60405180910390f35b348015610247575f5ffd5b5061021f61025636600461282f565b610668565b348015610266575f5ffd5b505f5b6040519015158152602001610233565b348015610284575f5ffd5b5061026961067e565b348015610298575f5ffd5b5060fd5461021f90600160401b90046001600160401b031681565b3480156102be575f5ffd5b50620cd34061021f565b3480156102d3575f5ffd5b506102e76102e2366004612883565b610696565b005b3480156102f4575f5ffd5b50609754610308906001600160a01b031681565b6040516001600160a01b039091168152602001610233565b34801561032b575f5ffd5b5061030861033a3660046128ab565b610766565b34801561034a575f5ffd5b506102e7610772565b6102e76103613660046128fc565b610786565b348015610371575f5ffd5b5061037a61083f565b604051908152602001610233565b348015610393575f5ffd5b5060fd5461021f90600160801b90046001600160401b031681565b3480156103b9575f5ffd5b506102e76103c83660046129bf565b6108f0565b3480156103d8575f5ffd5b5061026960c954610100900460ff1660021490565b3480156103f8575f5ffd5b506102e7610af9565b34801561040c575f5ffd5b506102e7610b0a565b348015610420575f5ffd5b506102e7610b81565b348015610434575f5ffd5b50610308610b94565b348015610448575f5ffd5b506033546001600160a01b0316610308565b348015610465575f5ffd5b5061030871777735367b36bc9b61c50022d9d0700db4ec81565b34801561048a575f5ffd5b5060fd5461021f90600160c01b90046001600160401b031681565b3480156104b0575f5ffd5b506104c46104bf366004612a27565b610ba2565b604080519283526001600160401b03909116602083015201610233565b3480156104ec575f5ffd5b506103086104fb366004612a58565b610c18565b34801561050b575f5ffd5b5060fd5461021f906001600160401b031681565b34801561052a575f5ffd5b50610533610c2d565b60408051825163ffffffff16815260209283015160ff169281019290925201610233565b348015610562575f5ffd5b506102e7610571366004612a86565b610c5e565b348015610581575f5ffd5b5061037a60fc5481565b348015610596575f5ffd5b5060c95461021f906201000090046001600160401b031681565b3480156105bb575f5ffd5b506065546001600160a01b0316610308565b3480156105d8575f5ffd5b506104c46105e7366004612ace565b610f7b565b3480156105f7575f5ffd5b5061037a610606366004612b16565b61105d565b348015610616575f5ffd5b506102e7610625366004612883565b611095565b348015610635575f5ffd5b506102e7610644366004612b2d565b611106565b348015610654575f5ffd5b506102e7610663366004612b59565b6112c5565b5f61067484848461174e565b90505b9392505050565b5f600261068d60c95460ff1690565b60ff1614905090565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001630036106e75760405162461bcd60e51b81526004016106de90612b9a565b60405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316610719611809565b6001600160a01b03161461073f5760405162461bcd60e51b81526004016106de90612be6565b61074881611824565b604080515f808252602082019092526107639183919061182c565b50565b5f610674848484611996565b61077a6119e8565b610784335f611a78565b565b6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001630036107ce5760405162461bcd60e51b81526004016106de90612b9a565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316610800611809565b6001600160a01b0316146108265760405162461bcd60e51b81526004016106de90612be6565b61082f82611824565b61083b8282600161182c565b5050565b5f306001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146108de5760405162461bcd60e51b815260206004820152603860248201527f555550535570677261646561626c653a206d757374206e6f742062652063616c60448201527f6c6564207468726f7567682064656c656761746563616c6c000000000000000060648201526084016106de565b505f516020612e735f395f51905f5290565b5f54610100900460ff161580801561090e57505f54600160ff909116105b806109275750303b15801561092757505f5460ff166001145b61098a5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084016106de565b5f805460ff1916600117905580156109ab575f805461ff0019166101001790555b6109b58585611a80565b6001600160401b03831615806109d3575046836001600160401b0316145b156109f1576040516308279a2560e31b815260040160405180910390fd5b600146111580610a0757506001600160401b0346115b15610a2557604051638f972ecb60e01b815260040160405180910390fd5b4315610a6f5743600103610a56575f610a3f600143612c46565b5f81815260fb602052604090209040905550610a6f565b604051635a0f9e4160e11b815260040160405180910390fd5b60fe80546001600160401b0380861667ffffffffffffffff199283161790925560fd805492851692909116919091179055610aa943611aba565b5060fc558015610af2575f805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b5050505050565b610b01611b4a565b6107845f611ba4565b60655433906001600160a01b03168114610b785760405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b60648201526084016106de565b61076381611ba4565b610b89611bbd565b610784336001611a78565b5f610b9d611809565b905090565b5f5f5f610bad610c2d565b9050610c0c816020015160ff16825f015163ffffffff16610bce9190612c59565b60fd5483516001600160401b038083169263ffffffff90921691610bfb91600160401b909104168a612c70565b610c059190612c8f565b875f611c2e565b90969095509350505050565b5f610c24468484611996565b90505b92915050565b604080518082019091525f8082526020820152610b9d60408051808201909152630393870081526008602082015290565b825f819003610c805760405163ec73295960e01b815260040160405180910390fd5b826001600160401b0316805f03610caa5760405163ec73295960e01b815260040160405180910390fd5b3371777735367b36bc9b61c50022d9d0700db4ec14610cdc57604051636494e9f760e01b815260040160405180910390fd5b6002610cea60c95460ff1690565b60ff1603610d0b5760405163dfc60d8560e01b815260040160405180910390fd5b610d156002611cb7565b620cd3404310610d3857604051631799c89b60e01b815260040160405180910390fd5b5f610d44600143612c46565b90505f5f610d5183611aba565b915091508160fc5414610d775760405163d719258d60e01b815260040160405180910390fd5b5f5f610d838989610ba2565b91509150610d8e5f90565b158015610d9b5750814814155b15610db9576040516336d54d4f60e11b815260040160405180910390fd5b60fd546001600160401b03600160401b9091048116908a161115610ec457610df26d7369676e616c5f7365727669636560901b5f610c18565b60fe546040516313e4299d60e21b81526001600160401b0391821660048201527f73e6d340850343cc6f001515dc593377337c95a6ffe034fe1e844d4dab5da1696024820152908b166044820152606481018c90526001600160a01b039190911690634f90a674906084016020604051808303815f875af1158015610e79573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e9d9190612cb8565b5060fd805467ffffffffffffffff60401b1916600160401b6001600160401b038c16021790555b5f85815260fb60205260409081902086409081905560fc85905560fd8054426001600160401b03908116600160801b0277ffffffffffffffff0000000000000000ffffffffffffffff199092169086161717905590517f41c3f410f5c8ac36bb46b1dccef0de0f964087c9e688795fa02ecfa2c20b3fe490610f5b90839085909182526001600160401b0316602082015260400190565b60405180910390a1505050505050610f736001611cb7565b505050505050565b5f8080610f8e6060880160408901612ccf565b610f9e9063ffffffff1687612c8f565b9050610fb060a0880160808901612ccf565b63ffffffff1615801590610fe15750610fcf60a0880160808901612ccf565b63ffffffff16816001600160401b0316115b15610fff57610ff660a0880160808901612ccf565b63ffffffff1690505b5f61100d6020890189612ce8565b60ff1661102060608a0160408b01612ccf565b63ffffffff166110309190612c59565b905061104e8187848861104960808e0160608f01612d08565b611c2e565b93509350505094509492505050565b5f43821061106c57505f919050565b4361107983610100612d21565b1061108357504090565b505f90815260fb602052604090205490565b61109d611b4a565b606580546001600160a01b0383166001600160a01b031990911681179091556110ce6033546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b61111a60c954610100900460ff1660021490565b156111385760405163bae6e2a960e01b815260040160405180910390fd5b693bb4ba34323930bbb2b960b11b6111586033546001600160a01b031690565b6001600160a01b0316336001600160a01b031614158015611195575061117f816001610c18565b6001600160a01b0316336001600160a01b031614155b156111b357604051630d85cccf60e11b815260040160405180910390fd5b60026111c160c95460ff1690565b60ff16036111e25760405163dfc60d8560e01b815260040160405180910390fd5b6111ec6002611cb7565b6001600160a01b0382166112135760405163053fd54760e01b815260040160405180910390fd5b6001600160a01b038316611239576112346001600160a01b03831647611ccd565b6112b6565b6040516370a0823160e01b81523060048201526112b69083906001600160a01b038616906370a0823190602401602060405180830381865afa158015611281573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112a59190612cb8565b6001600160a01b0386169190611cd8565b6112c06001611cb7565b505050565b825f8190036112e75760405163ec73295960e01b815260040160405180910390fd5b846001600160401b0316805f036113115760405163ec73295960e01b815260040160405180910390fd5b6113216060840160408501612ccf565b63ffffffff16805f036113475760405163ec73295960e01b815260040160405180910390fd5b6113546020850185612ce8565b60ff16805f036113775760405163ec73295960e01b815260040160405180910390fd5b3371777735367b36bc9b61c50022d9d0700db4ec146113a957604051636494e9f760e01b815260040160405180910390fd5b60026113b760c95460ff1690565b60ff16036113d85760405163dfc60d8560e01b815260040160405180910390fd5b6113e26002611cb7565b620cd34043101561140657604051631799c89b60e01b815260040160405180910390fd5b5f611412600143612c46565b90505f5f61141f83611aba565b915091508160fc54146114455760405163d719258d60e01b815260040160405180910390fd5b60fc55505f6114576020880188612ce8565b60ff1661146a6060890160408a01612ccf565b63ffffffff1661147a9190612c8f565b60fd549091506001600160401b03808316600160c01b90920416146115155760fd54600160c01b90046001600160401b0316156114f45760fd546114d2906001600160401b0380821691600160c01b90041683610668565b60fd805467ffffffffffffffff19166001600160401b03929092169190911790555b60fd80546001600160c01b0316600160c01b6001600160401b038416021790555b5060fd545f90819061154f90899061153d90600160801b90046001600160401b031642612c46565b60fd546001600160401b03168c610f7b565b9150915061155a5f90565b1580156115675750814814155b15611585576040516336d54d4f60e11b815260040160405180910390fd5b60fd805467ffffffffffffffff19166001600160401b039283161790819055600160401b90048116908b16111590506116a5576115d36d7369676e616c5f7365727669636560901b5f610c18565b60fe546040516313e4299d60e21b81526001600160401b0391821660048201527f73e6d340850343cc6f001515dc593377337c95a6ffe034fe1e844d4dab5da1696024820152908b166044820152606481018a90526001600160a01b039190911690634f90a674906084016020604051808303815f875af115801561165a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061167e9190612cb8565b5060fd805467ffffffffffffffff60401b1916600160401b6001600160401b038c16021790555b5f81815260fb60205260409081902082409081905560fd80546001600160401b03428116600160801b0267ffffffffffffffff60801b1983168117909355935192937f41c3f410f5c8ac36bb46b1dccef0de0f964087c9e688795fa02ecfa2c20b3fe493611730938693908316921691909117909182526001600160401b0316602082015260400190565b60405180910390a150506117446001611cb7565b5050505050505050565b5f826001600160401b03165f03611766575080610677565b670de0b6b3a76400005f6001600160401b038086169061178890861684612c59565b6117929190612d48565b90506001600160ff1b038111156117bc57604051636296f1b960e11b815260040160405180910390fd5b5f6117c682611d2a565b90505f828802828702015f8112600181146117e55785820492506117e9565b5f92505b506117fd9050816001600160401b03611f47565b98975050505050505050565b5f516020612e735f395f51905f52546001600160a01b031690565b610763611b4a565b7f4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd91435460ff161561185f576112c083611f5b565b826001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156118b9575060408051601f3d908101601f191682019092526118b691810190612cb8565b60015b61191c5760405162461bcd60e51b815260206004820152602e60248201527f45524331393637557067726164653a206e657720696d706c656d656e7461746960448201526d6f6e206973206e6f74205555505360901b60648201526084016106de565b5f516020612e735f395f51905f52811461198a5760405162461bcd60e51b815260206004820152602960248201527f45524331393637557067726164653a20756e737570706f727465642070726f786044820152681a58589b195555525160ba1b60648201526084016106de565b506112c0838383611ff6565b5f6119a18484612020565b9050811580156119b857506001600160a01b038116155b1561067757604051632b0d65db60e01b81526001600160401b0385166004820152602481018490526044016106de565b6119fc60c954610100900460ff1660021490565b611a195760405163bae6e2a960e01b815260040160405180910390fd5b60c9805461010069ffffffffffffffffff001990911662010000426001600160401b031602171790556040513381527f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa906020015b60405180910390a1565b61083b611b4a565b806001600160a01b038116611aa85760405163538ba4f960e01b815260040160405180910390fd5b611ab1836120ca565b6112c082612128565b5f5f611ac46127f4565b5f5b60ff81108015611ad95750806001018510155b15611b0a575f198186030180408360ff83066101008110611afc57611afc612d5b565b602002015250600101611ac6565b5046611fe082015261200081209250834081611b2760ff87612d6f565b6101008110611b3857611b38612d5b565b60200201526120009020919391925050565b6033546001600160a01b031633146107845760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016106de565b606580546001600160a01b031916905561076381612198565b611bd160c954610100900460ff1660021490565b15611bef5760405163bae6e2a960e01b815260040160405180910390fd5b60c9805461ff0019166102001790556040513381527f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25890602001611a6e565b5f8080611c4a63ffffffff86166001600160401b038916612d21565b9050856001600160401b03168111611c63576001611c76565b611c766001600160401b03871682612c46565b9050611c956001600160401b03611c8f838783166121e9565b90611f47565b9150611caa826001600160401b0316896121fe565b9250509550959350505050565b60c9805460ff191660ff92909216919091179055565b61083b82825a61222d565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b1790526112c0908490612270565b6fffffffffffffffffffffffffffffffff811160071b81811c6001600160401b031060061b1781811c63ffffffff1060051b1781811c61ffff1060041b1781811c60ff1060031b175f8213611d8657631615e6385f526004601cfd5b7ff8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff6f8421084210842108cc6318c6db6d54be83831c1c601f161a1890811b609f90811c6c465772b2bbbb5f824b15207a3081018102606090811d6d0388eaa27412d5aca026815d636e018202811d6d0df99ac502031bf953eff472fdcc018202811d6d13cdffb29d51d99322bdff5f2211018202811d6d0a0f742023def783a307a986912e018202811d6d01920d8043ca89b5239253284e42018202811d6c0b7a86d7375468fac667a0a527016c29508e458543d8aa4df2abee7883018302821d6d0139601a2efabe717e604cbb4894018302821d6d02247f7a7b6594320649aa03aba1018302821d6c8c3f38e95a6b1ff2ab1c3b343619018302821d6d02384773bdf1ac5676facced60901901830290911d6cb9a025d814b29c212b8b1a07cd1901909102780a09507084cc699bb0e71ea869ffffffffffffffffffffffff190105711340daa0d5f769dba1915cef59f0815a5506029190037d0267a36c0c95b3975ab3ee5b203a7614a3f75373f047d803ae7b6687f2b302017d57115e47018c7177eebf7cd370a3356a1b7863008a5ae8028c72b88642840160ae1d90565b5f818311611f555782610c24565b50919050565b6001600160a01b0381163b611fc85760405162461bcd60e51b815260206004820152602d60248201527f455243313936373a206e657720696d706c656d656e746174696f6e206973206e60448201526c1bdd08184818dbdb9d1c9858dd609a1b60648201526084016106de565b5f516020612e735f395f51905f5280546001600160a01b0319166001600160a01b0392909216919091179055565b611fff83612343565b5f8251118061200b5750805b156112c05761201a8383612382565b50505050565b6097545f906001600160a01b03168061204c57604051638ed88b2560e01b815260040160405180910390fd5b604051630a3dc4f360e21b81526001600160401b0385166004820152602481018490526001600160a01b038216906328f713cc90604401602060405180830381865afa15801561209e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120c29190612d82565b949350505050565b5f54610100900460ff166120f05760405162461bcd60e51b81526004016106de90612d9d565b6120f86123a7565b6121166001600160a01b038216156121105781611ba4565b33611ba4565b5060c9805461ff001916610100179055565b5f54610100900460ff1661214e5760405162461bcd60e51b81526004016106de90612d9d565b6001600160401b034611156121765760405163a12e8fa960e01b815260040160405180910390fd5b609780546001600160a01b0319166001600160a01b0392909216919091179055565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f8183116121f75781610c24565b5090919050565b5f5f8261220b85856123cd565b6122159190612d48565b9050801561222357806120c2565b5060019392505050565b815f0361223957505050565b61225383838360405180602001604052805f815250612447565b6112c057604051634c67134d60e11b815260040160405180910390fd5b5f6122c4826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166124849092919063ffffffff16565b905080515f14806122e45750808060200190518101906122e49190612de8565b6112c05760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016106de565b61234c81611f5b565b6040516001600160a01b038216907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a250565b6060610c248383604051806060016040528060278152602001612e9360279139612492565b5f54610100900460ff166107845760405162461bcd60e51b81526004016106de90612d9d565b5f815f036123ee57604051636296f1b960e11b815260040160405180910390fd5b5f8261240285670de0b6b3a7640000612c59565b61240c9190612d48565b9050680755bf798b4a1bf1e481111561242b5750680755bf798b4a1bf1e45b670de0b6b3a764000061243d82612506565b6120c29190612d48565b5f6001600160a01b03851661246f57604051634c67134d60e11b815260040160405180910390fd5b5f5f835160208501878988f195945050505050565b606061067484845f85612680565b60605f5f856001600160a01b0316856040516124ae9190612e25565b5f60405180830381855af49150503d805f81146124e6576040519150601f19603f3d011682016040523d82523d5f602084013e6124eb565b606091505b50915091506124fc86838387612757565b9695505050505050565b5f68023f2fa8f6da5b9d2819821361251d57919050565b680755bf798b4a1bf1e5821261253a5763a37bfec95f526004601cfd5b6503782dace9d9604e83901b0591505f60606bb17217f7d1cf79abc9e3b39884821b056001605f1b01901d6bb17217f7d1cf79abc9e3b39881029093036c240c330e9fb2d9cbaf0fd5aafb1981018102606090811d6d0277594991cfc85f6e2461837cd9018202811d6d1a521255e34f6a5061b25ef1c9c319018202811d6db1bbb201f443cf962f1a1d3db4a5018202811d6e02c72388d9f74f51a9331fed693f1419018202811d6e05180bb14799ab47a8a8cb2a527d57016d02d16720577bd19bf614176fe9ea6c10fe68e7fd37d0007b713f765084018402831d9081019084016d01d3967ed30fc4f89c02bab5708119010290911d6e0587f503bb6ea29d25fcb740196450019091026d360d7aeea093263ecc6e0ecb291760621b010574029d9dc38563c32e5c2f6dc192ee70ef65f9978af30260c3939093039290921c92915050565b6060824710156126e15760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b60648201526084016106de565b5f5f866001600160a01b031685876040516126fc9190612e25565b5f6040518083038185875af1925050503d805f8114612736576040519150601f19603f3d011682016040523d82523d5f602084013e61273b565b606091505b509150915061274c87838387612757565b979650505050505050565b606083156127c55782515f036127be576001600160a01b0385163b6127be5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016106de565b50816120c2565b6120c283838151156127da5781518083602001fd5b8060405162461bcd60e51b81526004016106de9190612e40565b604051806120000160405280610100906020820280368337509192915050565b80356001600160401b038116811461282a575f5ffd5b919050565b5f5f5f60608486031215612841575f5ffd5b61284a84612814565b925061285860208501612814565b915061286660408501612814565b90509250925092565b6001600160a01b0381168114610763575f5ffd5b5f60208284031215612893575f5ffd5b81356106778161286f565b8015158114610763575f5ffd5b5f5f5f606084860312156128bd575f5ffd5b6128c684612814565b92506020840135915060408401356128dd8161289e565b809150509250925092565b634e487b7160e01b5f52604160045260245ffd5b5f5f6040838503121561290d575f5ffd5b82356129188161286f565b915060208301356001600160401b03811115612932575f5ffd5b8301601f81018513612942575f5ffd5b80356001600160401b0381111561295b5761295b6128e8565b604051601f8201601f19908116603f011681016001600160401b0381118282101715612989576129896128e8565b6040528181528282016020018710156129a0575f5ffd5b816020840160208301375f602083830101528093505050509250929050565b5f5f5f5f608085870312156129d2575f5ffd5b84356129dd8161286f565b935060208501356129ed8161286f565b92506129fb60408601612814565b9150612a0960608601612814565b905092959194509250565b803563ffffffff8116811461282a575f5ffd5b5f5f60408385031215612a38575f5ffd5b612a4183612814565b9150612a4f60208401612a14565b90509250929050565b5f5f60408385031215612a69575f5ffd5b823591506020830135612a7b8161289e565b809150509250929050565b5f5f5f5f60808587031215612a99575f5ffd5b8435935060208501359250612ab060408601612814565b9150612a0960608601612a14565b5f60a08284031215611f55575f5ffd5b5f5f5f5f6101008587031215612ae2575f5ffd5b612aec8686612abe565b9350612afa60a08601612814565b9250612b0860c08601612814565b9150612a0960e08601612a14565b5f60208284031215612b26575f5ffd5b5035919050565b5f5f60408385031215612b3e575f5ffd5b8235612b498161286f565b91506020830135612a7b8161286f565b5f5f5f5f6101008587031215612b6d575f5ffd5b612b7685612814565b935060208501359250612b8b60408601612a14565b9150612a098660608701612abe565b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b19195b1959d85d1958d85b1b60a21b606082015260800190565b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b6163746976652070726f787960a01b606082015260800190565b634e487b7160e01b5f52601160045260245ffd5b81810381811115610c2757610c27612c32565b8082028115828204841417610c2757610c27612c32565b6001600160401b038281168282160390811115610c2757610c27612c32565b6001600160401b038181168382160290811690818114612cb157612cb1612c32565b5092915050565b5f60208284031215612cc8575f5ffd5b5051919050565b5f60208284031215612cdf575f5ffd5b610c2482612a14565b5f60208284031215612cf8575f5ffd5b813560ff81168114610677575f5ffd5b5f60208284031215612d18575f5ffd5b610c2482612814565b80820180821115610c2757610c27612c32565b634e487b7160e01b5f52601260045260245ffd5b5f82612d5657612d56612d34565b500490565b634e487b7160e01b5f52603260045260245ffd5b5f82612d7d57612d7d612d34565b500690565b5f60208284031215612d92575f5ffd5b81516106778161286f565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b5f60208284031215612df8575f5ffd5b81516106778161289e565b5f5b83811015612e1d578181015183820152602001612e05565b50505f910152565b5f8251612e36818460208701612e03565b9190910192915050565b602081525f8251806020840152612e5e816040850160208701612e03565b601f01601f1916919091016040019291505056fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc416464726573733a206c6f772d6c6576656c2064656c65676174652063616c6c206661696c6564a26469706673582212200831bab1c13e5c853812b859c0e2cf39e5a169696d67b0ceef357684eb4bbec864736f6c634300081b0033

Deployed ByteCode

0x6080604052600436106101fc575f3560e01c80638456cb5911610113578063da69d3db1161009d578063e902461a1161006d578063e902461a146105cd578063ee82ac5e146105ec578063f2fde38b1461060b578063f940e3851461062a578063fd85eb2d14610649575f5ffd5b8063da69d3db14610557578063dac5df7814610576578063e07baba61461058b578063e30c3978146105b0575f5ffd5b8063a7137c0f116100e3578063a7137c0f1461047f578063a7e022d1146104a5578063a86f9d9e146104e1578063b8c7b30c14610500578063c3f909d41461051f575f5ffd5b80638456cb59146104155780638abf6077146104295780638da5cb5b1461043d5780639ee512f21461045a575f5ffd5b80633eb6b8cf11610194578063539b8ade11610164578063539b8ade146103885780635950f9f1146103ae5780635c975abb146103cd578063715018a6146103ed57806379ba509714610401575f5ffd5b80633eb6b8cf146103205780633f4ba83a1461033f5780634f1ef2861461035357806352d1902d14610366575f5ffd5b806333d5ac9b116101cf57806333d5ac9b1461028d578063356aec04146102b35780633659cfe6146102c85780633ab76e9f146102e9575f5ffd5b806312622e5b14610200578063136dc4a81461023c5780632f9804731461025b5780633075db5614610279575b5f5ffd5b34801561020b575f5ffd5b5060fe5461021f906001600160401b031681565b6040516001600160401b0390911681526020015b60405180910390f35b348015610247575f5ffd5b5061021f61025636600461282f565b610668565b348015610266575f5ffd5b505f5b6040519015158152602001610233565b348015610284575f5ffd5b5061026961067e565b348015610298575f5ffd5b5060fd5461021f90600160401b90046001600160401b031681565b3480156102be575f5ffd5b50620cd34061021f565b3480156102d3575f5ffd5b506102e76102e2366004612883565b610696565b005b3480156102f4575f5ffd5b50609754610308906001600160a01b031681565b6040516001600160a01b039091168152602001610233565b34801561032b575f5ffd5b5061030861033a3660046128ab565b610766565b34801561034a575f5ffd5b506102e7610772565b6102e76103613660046128fc565b610786565b348015610371575f5ffd5b5061037a61083f565b604051908152602001610233565b348015610393575f5ffd5b5060fd5461021f90600160801b90046001600160401b031681565b3480156103b9575f5ffd5b506102e76103c83660046129bf565b6108f0565b3480156103d8575f5ffd5b5061026960c954610100900460ff1660021490565b3480156103f8575f5ffd5b506102e7610af9565b34801561040c575f5ffd5b506102e7610b0a565b348015610420575f5ffd5b506102e7610b81565b348015610434575f5ffd5b50610308610b94565b348015610448575f5ffd5b506033546001600160a01b0316610308565b348015610465575f5ffd5b5061030871777735367b36bc9b61c50022d9d0700db4ec81565b34801561048a575f5ffd5b5060fd5461021f90600160c01b90046001600160401b031681565b3480156104b0575f5ffd5b506104c46104bf366004612a27565b610ba2565b604080519283526001600160401b03909116602083015201610233565b3480156104ec575f5ffd5b506103086104fb366004612a58565b610c18565b34801561050b575f5ffd5b5060fd5461021f906001600160401b031681565b34801561052a575f5ffd5b50610533610c2d565b60408051825163ffffffff16815260209283015160ff169281019290925201610233565b348015610562575f5ffd5b506102e7610571366004612a86565b610c5e565b348015610581575f5ffd5b5061037a60fc5481565b348015610596575f5ffd5b5060c95461021f906201000090046001600160401b031681565b3480156105bb575f5ffd5b506065546001600160a01b0316610308565b3480156105d8575f5ffd5b506104c46105e7366004612ace565b610f7b565b3480156105f7575f5ffd5b5061037a610606366004612b16565b61105d565b348015610616575f5ffd5b506102e7610625366004612883565b611095565b348015610635575f5ffd5b506102e7610644366004612b2d565b611106565b348015610654575f5ffd5b506102e7610663366004612b59565b6112c5565b5f61067484848461174e565b90505b9392505050565b5f600261068d60c95460ff1690565b60ff1614905090565b6001600160a01b037f0000000000000000000000008b9700d5c4212c3467e3f25989897293b06e147d1630036106e75760405162461bcd60e51b81526004016106de90612b9a565b60405180910390fd5b7f0000000000000000000000008b9700d5c4212c3467e3f25989897293b06e147d6001600160a01b0316610719611809565b6001600160a01b03161461073f5760405162461bcd60e51b81526004016106de90612be6565b61074881611824565b604080515f808252602082019092526107639183919061182c565b50565b5f610674848484611996565b61077a6119e8565b610784335f611a78565b565b6001600160a01b037f0000000000000000000000008b9700d5c4212c3467e3f25989897293b06e147d1630036107ce5760405162461bcd60e51b81526004016106de90612b9a565b7f0000000000000000000000008b9700d5c4212c3467e3f25989897293b06e147d6001600160a01b0316610800611809565b6001600160a01b0316146108265760405162461bcd60e51b81526004016106de90612be6565b61082f82611824565b61083b8282600161182c565b5050565b5f306001600160a01b037f0000000000000000000000008b9700d5c4212c3467e3f25989897293b06e147d16146108de5760405162461bcd60e51b815260206004820152603860248201527f555550535570677261646561626c653a206d757374206e6f742062652063616c60448201527f6c6564207468726f7567682064656c656761746563616c6c000000000000000060648201526084016106de565b505f516020612e735f395f51905f5290565b5f54610100900460ff161580801561090e57505f54600160ff909116105b806109275750303b15801561092757505f5460ff166001145b61098a5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b60648201526084016106de565b5f805460ff1916600117905580156109ab575f805461ff0019166101001790555b6109b58585611a80565b6001600160401b03831615806109d3575046836001600160401b0316145b156109f1576040516308279a2560e31b815260040160405180910390fd5b600146111580610a0757506001600160401b0346115b15610a2557604051638f972ecb60e01b815260040160405180910390fd5b4315610a6f5743600103610a56575f610a3f600143612c46565b5f81815260fb602052604090209040905550610a6f565b604051635a0f9e4160e11b815260040160405180910390fd5b60fe80546001600160401b0380861667ffffffffffffffff199283161790925560fd805492851692909116919091179055610aa943611aba565b5060fc558015610af2575f805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b5050505050565b610b01611b4a565b6107845f611ba4565b60655433906001600160a01b03168114610b785760405162461bcd60e51b815260206004820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f7420746865206044820152683732bb9037bbb732b960b91b60648201526084016106de565b61076381611ba4565b610b89611bbd565b610784336001611a78565b5f610b9d611809565b905090565b5f5f5f610bad610c2d565b9050610c0c816020015160ff16825f015163ffffffff16610bce9190612c59565b60fd5483516001600160401b038083169263ffffffff90921691610bfb91600160401b909104168a612c70565b610c059190612c8f565b875f611c2e565b90969095509350505050565b5f610c24468484611996565b90505b92915050565b604080518082019091525f8082526020820152610b9d60408051808201909152630393870081526008602082015290565b825f819003610c805760405163ec73295960e01b815260040160405180910390fd5b826001600160401b0316805f03610caa5760405163ec73295960e01b815260040160405180910390fd5b3371777735367b36bc9b61c50022d9d0700db4ec14610cdc57604051636494e9f760e01b815260040160405180910390fd5b6002610cea60c95460ff1690565b60ff1603610d0b5760405163dfc60d8560e01b815260040160405180910390fd5b610d156002611cb7565b620cd3404310610d3857604051631799c89b60e01b815260040160405180910390fd5b5f610d44600143612c46565b90505f5f610d5183611aba565b915091508160fc5414610d775760405163d719258d60e01b815260040160405180910390fd5b5f5f610d838989610ba2565b91509150610d8e5f90565b158015610d9b5750814814155b15610db9576040516336d54d4f60e11b815260040160405180910390fd5b60fd546001600160401b03600160401b9091048116908a161115610ec457610df26d7369676e616c5f7365727669636560901b5f610c18565b60fe546040516313e4299d60e21b81526001600160401b0391821660048201527f73e6d340850343cc6f001515dc593377337c95a6ffe034fe1e844d4dab5da1696024820152908b166044820152606481018c90526001600160a01b039190911690634f90a674906084016020604051808303815f875af1158015610e79573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e9d9190612cb8565b5060fd805467ffffffffffffffff60401b1916600160401b6001600160401b038c16021790555b5f85815260fb60205260409081902086409081905560fc85905560fd8054426001600160401b03908116600160801b0277ffffffffffffffff0000000000000000ffffffffffffffff199092169086161717905590517f41c3f410f5c8ac36bb46b1dccef0de0f964087c9e688795fa02ecfa2c20b3fe490610f5b90839085909182526001600160401b0316602082015260400190565b60405180910390a1505050505050610f736001611cb7565b505050505050565b5f8080610f8e6060880160408901612ccf565b610f9e9063ffffffff1687612c8f565b9050610fb060a0880160808901612ccf565b63ffffffff1615801590610fe15750610fcf60a0880160808901612ccf565b63ffffffff16816001600160401b0316115b15610fff57610ff660a0880160808901612ccf565b63ffffffff1690505b5f61100d6020890189612ce8565b60ff1661102060608a0160408b01612ccf565b63ffffffff166110309190612c59565b905061104e8187848861104960808e0160608f01612d08565b611c2e565b93509350505094509492505050565b5f43821061106c57505f919050565b4361107983610100612d21565b1061108357504090565b505f90815260fb602052604090205490565b61109d611b4a565b606580546001600160a01b0383166001600160a01b031990911681179091556110ce6033546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b61111a60c954610100900460ff1660021490565b156111385760405163bae6e2a960e01b815260040160405180910390fd5b693bb4ba34323930bbb2b960b11b6111586033546001600160a01b031690565b6001600160a01b0316336001600160a01b031614158015611195575061117f816001610c18565b6001600160a01b0316336001600160a01b031614155b156111b357604051630d85cccf60e11b815260040160405180910390fd5b60026111c160c95460ff1690565b60ff16036111e25760405163dfc60d8560e01b815260040160405180910390fd5b6111ec6002611cb7565b6001600160a01b0382166112135760405163053fd54760e01b815260040160405180910390fd5b6001600160a01b038316611239576112346001600160a01b03831647611ccd565b6112b6565b6040516370a0823160e01b81523060048201526112b69083906001600160a01b038616906370a0823190602401602060405180830381865afa158015611281573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112a59190612cb8565b6001600160a01b0386169190611cd8565b6112c06001611cb7565b505050565b825f8190036112e75760405163ec73295960e01b815260040160405180910390fd5b846001600160401b0316805f036113115760405163ec73295960e01b815260040160405180910390fd5b6113216060840160408501612ccf565b63ffffffff16805f036113475760405163ec73295960e01b815260040160405180910390fd5b6113546020850185612ce8565b60ff16805f036113775760405163ec73295960e01b815260040160405180910390fd5b3371777735367b36bc9b61c50022d9d0700db4ec146113a957604051636494e9f760e01b815260040160405180910390fd5b60026113b760c95460ff1690565b60ff16036113d85760405163dfc60d8560e01b815260040160405180910390fd5b6113e26002611cb7565b620cd34043101561140657604051631799c89b60e01b815260040160405180910390fd5b5f611412600143612c46565b90505f5f61141f83611aba565b915091508160fc54146114455760405163d719258d60e01b815260040160405180910390fd5b60fc55505f6114576020880188612ce8565b60ff1661146a6060890160408a01612ccf565b63ffffffff1661147a9190612c8f565b60fd549091506001600160401b03808316600160c01b90920416146115155760fd54600160c01b90046001600160401b0316156114f45760fd546114d2906001600160401b0380821691600160c01b90041683610668565b60fd805467ffffffffffffffff19166001600160401b03929092169190911790555b60fd80546001600160c01b0316600160c01b6001600160401b038416021790555b5060fd545f90819061154f90899061153d90600160801b90046001600160401b031642612c46565b60fd546001600160401b03168c610f7b565b9150915061155a5f90565b1580156115675750814814155b15611585576040516336d54d4f60e11b815260040160405180910390fd5b60fd805467ffffffffffffffff19166001600160401b039283161790819055600160401b90048116908b16111590506116a5576115d36d7369676e616c5f7365727669636560901b5f610c18565b60fe546040516313e4299d60e21b81526001600160401b0391821660048201527f73e6d340850343cc6f001515dc593377337c95a6ffe034fe1e844d4dab5da1696024820152908b166044820152606481018a90526001600160a01b039190911690634f90a674906084016020604051808303815f875af115801561165a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061167e9190612cb8565b5060fd805467ffffffffffffffff60401b1916600160401b6001600160401b038c16021790555b5f81815260fb60205260409081902082409081905560fd80546001600160401b03428116600160801b0267ffffffffffffffff60801b1983168117909355935192937f41c3f410f5c8ac36bb46b1dccef0de0f964087c9e688795fa02ecfa2c20b3fe493611730938693908316921691909117909182526001600160401b0316602082015260400190565b60405180910390a150506117446001611cb7565b5050505050505050565b5f826001600160401b03165f03611766575080610677565b670de0b6b3a76400005f6001600160401b038086169061178890861684612c59565b6117929190612d48565b90506001600160ff1b038111156117bc57604051636296f1b960e11b815260040160405180910390fd5b5f6117c682611d2a565b90505f828802828702015f8112600181146117e55785820492506117e9565b5f92505b506117fd9050816001600160401b03611f47565b98975050505050505050565b5f516020612e735f395f51905f52546001600160a01b031690565b610763611b4a565b7f4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd91435460ff161561185f576112c083611f5b565b826001600160a01b03166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa9250505080156118b9575060408051601f3d908101601f191682019092526118b691810190612cb8565b60015b61191c5760405162461bcd60e51b815260206004820152602e60248201527f45524331393637557067726164653a206e657720696d706c656d656e7461746960448201526d6f6e206973206e6f74205555505360901b60648201526084016106de565b5f516020612e735f395f51905f52811461198a5760405162461bcd60e51b815260206004820152602960248201527f45524331393637557067726164653a20756e737570706f727465642070726f786044820152681a58589b195555525160ba1b60648201526084016106de565b506112c0838383611ff6565b5f6119a18484612020565b9050811580156119b857506001600160a01b038116155b1561067757604051632b0d65db60e01b81526001600160401b0385166004820152602481018490526044016106de565b6119fc60c954610100900460ff1660021490565b611a195760405163bae6e2a960e01b815260040160405180910390fd5b60c9805461010069ffffffffffffffffff001990911662010000426001600160401b031602171790556040513381527f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa906020015b60405180910390a1565b61083b611b4a565b806001600160a01b038116611aa85760405163538ba4f960e01b815260040160405180910390fd5b611ab1836120ca565b6112c082612128565b5f5f611ac46127f4565b5f5b60ff81108015611ad95750806001018510155b15611b0a575f198186030180408360ff83066101008110611afc57611afc612d5b565b602002015250600101611ac6565b5046611fe082015261200081209250834081611b2760ff87612d6f565b6101008110611b3857611b38612d5b565b60200201526120009020919391925050565b6033546001600160a01b031633146107845760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016106de565b606580546001600160a01b031916905561076381612198565b611bd160c954610100900460ff1660021490565b15611bef5760405163bae6e2a960e01b815260040160405180910390fd5b60c9805461ff0019166102001790556040513381527f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25890602001611a6e565b5f8080611c4a63ffffffff86166001600160401b038916612d21565b9050856001600160401b03168111611c63576001611c76565b611c766001600160401b03871682612c46565b9050611c956001600160401b03611c8f838783166121e9565b90611f47565b9150611caa826001600160401b0316896121fe565b9250509550959350505050565b60c9805460ff191660ff92909216919091179055565b61083b82825a61222d565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b1790526112c0908490612270565b6fffffffffffffffffffffffffffffffff811160071b81811c6001600160401b031060061b1781811c63ffffffff1060051b1781811c61ffff1060041b1781811c60ff1060031b175f8213611d8657631615e6385f526004601cfd5b7ff8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff6f8421084210842108cc6318c6db6d54be83831c1c601f161a1890811b609f90811c6c465772b2bbbb5f824b15207a3081018102606090811d6d0388eaa27412d5aca026815d636e018202811d6d0df99ac502031bf953eff472fdcc018202811d6d13cdffb29d51d99322bdff5f2211018202811d6d0a0f742023def783a307a986912e018202811d6d01920d8043ca89b5239253284e42018202811d6c0b7a86d7375468fac667a0a527016c29508e458543d8aa4df2abee7883018302821d6d0139601a2efabe717e604cbb4894018302821d6d02247f7a7b6594320649aa03aba1018302821d6c8c3f38e95a6b1ff2ab1c3b343619018302821d6d02384773bdf1ac5676facced60901901830290911d6cb9a025d814b29c212b8b1a07cd1901909102780a09507084cc699bb0e71ea869ffffffffffffffffffffffff190105711340daa0d5f769dba1915cef59f0815a5506029190037d0267a36c0c95b3975ab3ee5b203a7614a3f75373f047d803ae7b6687f2b302017d57115e47018c7177eebf7cd370a3356a1b7863008a5ae8028c72b88642840160ae1d90565b5f818311611f555782610c24565b50919050565b6001600160a01b0381163b611fc85760405162461bcd60e51b815260206004820152602d60248201527f455243313936373a206e657720696d706c656d656e746174696f6e206973206e60448201526c1bdd08184818dbdb9d1c9858dd609a1b60648201526084016106de565b5f516020612e735f395f51905f5280546001600160a01b0319166001600160a01b0392909216919091179055565b611fff83612343565b5f8251118061200b5750805b156112c05761201a8383612382565b50505050565b6097545f906001600160a01b03168061204c57604051638ed88b2560e01b815260040160405180910390fd5b604051630a3dc4f360e21b81526001600160401b0385166004820152602481018490526001600160a01b038216906328f713cc90604401602060405180830381865afa15801561209e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120c29190612d82565b949350505050565b5f54610100900460ff166120f05760405162461bcd60e51b81526004016106de90612d9d565b6120f86123a7565b6121166001600160a01b038216156121105781611ba4565b33611ba4565b5060c9805461ff001916610100179055565b5f54610100900460ff1661214e5760405162461bcd60e51b81526004016106de90612d9d565b6001600160401b034611156121765760405163a12e8fa960e01b815260040160405180910390fd5b609780546001600160a01b0319166001600160a01b0392909216919091179055565b603380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f8183116121f75781610c24565b5090919050565b5f5f8261220b85856123cd565b6122159190612d48565b9050801561222357806120c2565b5060019392505050565b815f0361223957505050565b61225383838360405180602001604052805f815250612447565b6112c057604051634c67134d60e11b815260040160405180910390fd5b5f6122c4826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166124849092919063ffffffff16565b905080515f14806122e45750808060200190518101906122e49190612de8565b6112c05760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016106de565b61234c81611f5b565b6040516001600160a01b038216907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a250565b6060610c248383604051806060016040528060278152602001612e9360279139612492565b5f54610100900460ff166107845760405162461bcd60e51b81526004016106de90612d9d565b5f815f036123ee57604051636296f1b960e11b815260040160405180910390fd5b5f8261240285670de0b6b3a7640000612c59565b61240c9190612d48565b9050680755bf798b4a1bf1e481111561242b5750680755bf798b4a1bf1e45b670de0b6b3a764000061243d82612506565b6120c29190612d48565b5f6001600160a01b03851661246f57604051634c67134d60e11b815260040160405180910390fd5b5f5f835160208501878988f195945050505050565b606061067484845f85612680565b60605f5f856001600160a01b0316856040516124ae9190612e25565b5f60405180830381855af49150503d805f81146124e6576040519150601f19603f3d011682016040523d82523d5f602084013e6124eb565b606091505b50915091506124fc86838387612757565b9695505050505050565b5f68023f2fa8f6da5b9d2819821361251d57919050565b680755bf798b4a1bf1e5821261253a5763a37bfec95f526004601cfd5b6503782dace9d9604e83901b0591505f60606bb17217f7d1cf79abc9e3b39884821b056001605f1b01901d6bb17217f7d1cf79abc9e3b39881029093036c240c330e9fb2d9cbaf0fd5aafb1981018102606090811d6d0277594991cfc85f6e2461837cd9018202811d6d1a521255e34f6a5061b25ef1c9c319018202811d6db1bbb201f443cf962f1a1d3db4a5018202811d6e02c72388d9f74f51a9331fed693f1419018202811d6e05180bb14799ab47a8a8cb2a527d57016d02d16720577bd19bf614176fe9ea6c10fe68e7fd37d0007b713f765084018402831d9081019084016d01d3967ed30fc4f89c02bab5708119010290911d6e0587f503bb6ea29d25fcb740196450019091026d360d7aeea093263ecc6e0ecb291760621b010574029d9dc38563c32e5c2f6dc192ee70ef65f9978af30260c3939093039290921c92915050565b6060824710156126e15760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b60648201526084016106de565b5f5f866001600160a01b031685876040516126fc9190612e25565b5f6040518083038185875af1925050503d805f8114612736576040519150601f19603f3d011682016040523d82523d5f602084013e61273b565b606091505b509150915061274c87838387612757565b979650505050505050565b606083156127c55782515f036127be576001600160a01b0385163b6127be5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016106de565b50816120c2565b6120c283838151156127da5781518083602001fd5b8060405162461bcd60e51b81526004016106de9190612e40565b604051806120000160405280610100906020820280368337509192915050565b80356001600160401b038116811461282a575f5ffd5b919050565b5f5f5f60608486031215612841575f5ffd5b61284a84612814565b925061285860208501612814565b915061286660408501612814565b90509250925092565b6001600160a01b0381168114610763575f5ffd5b5f60208284031215612893575f5ffd5b81356106778161286f565b8015158114610763575f5ffd5b5f5f5f606084860312156128bd575f5ffd5b6128c684612814565b92506020840135915060408401356128dd8161289e565b809150509250925092565b634e487b7160e01b5f52604160045260245ffd5b5f5f6040838503121561290d575f5ffd5b82356129188161286f565b915060208301356001600160401b03811115612932575f5ffd5b8301601f81018513612942575f5ffd5b80356001600160401b0381111561295b5761295b6128e8565b604051601f8201601f19908116603f011681016001600160401b0381118282101715612989576129896128e8565b6040528181528282016020018710156129a0575f5ffd5b816020840160208301375f602083830101528093505050509250929050565b5f5f5f5f608085870312156129d2575f5ffd5b84356129dd8161286f565b935060208501356129ed8161286f565b92506129fb60408601612814565b9150612a0960608601612814565b905092959194509250565b803563ffffffff8116811461282a575f5ffd5b5f5f60408385031215612a38575f5ffd5b612a4183612814565b9150612a4f60208401612a14565b90509250929050565b5f5f60408385031215612a69575f5ffd5b823591506020830135612a7b8161289e565b809150509250929050565b5f5f5f5f60808587031215612a99575f5ffd5b8435935060208501359250612ab060408601612814565b9150612a0960608601612a14565b5f60a08284031215611f55575f5ffd5b5f5f5f5f6101008587031215612ae2575f5ffd5b612aec8686612abe565b9350612afa60a08601612814565b9250612b0860c08601612814565b9150612a0960e08601612a14565b5f60208284031215612b26575f5ffd5b5035919050565b5f5f60408385031215612b3e575f5ffd5b8235612b498161286f565b91506020830135612a7b8161286f565b5f5f5f5f6101008587031215612b6d575f5ffd5b612b7685612814565b935060208501359250612b8b60408601612a14565b9150612a098660608701612abe565b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b19195b1959d85d1958d85b1b60a21b606082015260800190565b6020808252602c908201527f46756e6374696f6e206d7573742062652063616c6c6564207468726f7567682060408201526b6163746976652070726f787960a01b606082015260800190565b634e487b7160e01b5f52601160045260245ffd5b81810381811115610c2757610c27612c32565b8082028115828204841417610c2757610c27612c32565b6001600160401b038281168282160390811115610c2757610c27612c32565b6001600160401b038181168382160290811690818114612cb157612cb1612c32565b5092915050565b5f60208284031215612cc8575f5ffd5b5051919050565b5f60208284031215612cdf575f5ffd5b610c2482612a14565b5f60208284031215612cf8575f5ffd5b813560ff81168114610677575f5ffd5b5f60208284031215612d18575f5ffd5b610c2482612814565b80820180821115610c2757610c27612c32565b634e487b7160e01b5f52601260045260245ffd5b5f82612d5657612d56612d34565b500490565b634e487b7160e01b5f52603260045260245ffd5b5f82612d7d57612d7d612d34565b500690565b5f60208284031215612d92575f5ffd5b81516106778161286f565b6020808252602b908201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960408201526a6e697469616c697a696e6760a81b606082015260800190565b5f60208284031215612df8575f5ffd5b81516106778161289e565b5f5b83811015612e1d578181015183820152602001612e05565b50505f910152565b5f8251612e36818460208701612e03565b9190910192915050565b602081525f8251806020840152612e5e816040850160208701612e03565b601f01601f1916919091016040019291505056fe360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc416464726573733a206c6f772d6c6576656c2064656c65676174652063616c6c206661696c6564a26469706673582212200831bab1c13e5c853812b859c0e2cf39e5a169696d67b0ceef357684eb4bbec864736f6c634300081b0033