Warning! Contract bytecode has been changed and doesn't match the verified one. Therefore, interaction with this smart contract may be risky.
- Contract name:
- SwapHelperFacet2
- Optimization enabled
- true
- Compiler version
- v0.8.28+commit.7893614a
- Optimization runs
- 50
- EVM Version
- paris
- Verified at
- 2024-11-06T21:37:33.438102Z
Constructor Arguments
0x00000000000000000000000096d52c0b499c1c95b9748f7e31a5b0018c1979d40000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f
Arg [0] (address) : 0x96d52c0b499c1c95b9748f7e31a5b0018c1979d4
Arg [1] (address) : 0x3b60e96efa9de4ca11b58fce393b441bb2e91a9f
contracts/SwapHelperFacet2.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "contracts/lib/PoolBalanceLib.sol"; import "contracts/interfaces/IPool.sol"; import "contracts/interfaces/ISwap.sol"; import "contracts/interfaces/IConverter.sol"; import "contracts/interfaces/IVC.sol"; import "contracts/interfaces/IVault.sol"; import "contracts/interfaces/IFacet.sol"; import "contracts/VaultStorage.sol"; import "contracts/Common.sol"; import "contracts/pools/xyk/XYKPoolFactory.sol"; import "openzeppelin/utils/math/SafeCast.sol"; import "openzeppelin/utils/math/Math.sol"; contract SwapHelperFacet2 is VaultStorage, IFacet, Common { using UncheckedMemory for Token[]; using PoolBalanceLib for PoolBalance; using SafeCast for uint256; using SafeCast for int256; address immutable thisImplementation; XYKPoolFactory public immutable factory; address immutable vc; constructor(address vc_, XYKPoolFactory factory_) { vc = vc_; factory = factory_; thisImplementation = address(this); } /** * @dev called by AdminFacet.admin_addFacet(). * doesnt get added to the routing table, hence the lack of access control. */ function initializeFacet() external { _setFunction( SwapHelperFacet2(this).addLiquidity.selector, thisImplementation ); _setFunction( SwapHelperFacet2(this).addLiquidityETH.selector, thisImplementation ); _setFunction( SwapHelperFacet2(this).quoteAddLiquidity.selector, thisImplementation ); _setFunction( SwapHelperFacet2(this).removeLiquidity.selector, thisImplementation ); _setFunction( SwapHelperFacet2(this).removeLiquidityETH.selector, thisImplementation ); _setFunction( SwapHelperFacet2(this).quoteRemoveLiquidity.selector, thisImplementation ); _setFunction( SwapHelperFacet2(this).deposit.selector, thisImplementation ); _setFunction( SwapHelperFacet2(this).withdraw.selector, thisImplementation ); } function execute1( IPool pool, uint8 method, address t1, uint8 m1, int128 a1, bytes memory data ) public payable returns (int128[] memory) { Token[] memory tokens = new Token[](1); VelocoreOperation[] memory ops = new VelocoreOperation[](1); tokens[0] = t1 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t1)); ops[0].poolId = bytes32(bytes1(method)) | bytes32(uint256(uint160(address(pool)))); ops[0].tokenInformations = new bytes32[](1); ops[0].data = data; ops[0].tokenInformations[0] = bytes32(bytes1(0x00)) | bytes32(bytes2(uint16(m1))) | bytes32(uint256(uint128(uint256(int256(a1))))); return execute(tokens, new int128[](1), ops); } function query1( IPool pool, uint8 method, address t1, uint8 m1, int128 a1, bytes memory data ) public returns (int128[] memory) { Token[] memory tokens = new Token[](1); VelocoreOperation[] memory ops = new VelocoreOperation[](1); tokens[0] = t1 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t1)); ops[0].poolId = bytes32(bytes1(method)) | bytes32(uint256(uint160(address(pool)))); ops[0].tokenInformations = new bytes32[](1); ops[0].data = data; ops[0].tokenInformations[0] = bytes32(bytes1(0x00)) | bytes32(bytes2(uint16(m1))) | bytes32(uint256(uint128(uint256(int256(a1))))); return query(tokens, new int128[](1), ops); } function execute2( IPool pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, bytes memory data ) public payable returns (int128[] memory) { Token[] memory tokens = new Token[](2); VelocoreOperation[] memory ops = new VelocoreOperation[](1); tokens[0] = t1 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t1)); tokens[1] = t2 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t2)); ops[0].poolId = bytes32(bytes1(method)) | bytes32(uint256(uint160(address(pool)))); ops[0].tokenInformations = new bytes32[](2); ops[0].data = data; ops[0].tokenInformations[0] = bytes32(bytes1(0x00)) | bytes32(bytes2(uint16(m1))) | bytes32(uint256(uint128(uint256(int256(a1))))); ops[0].tokenInformations[1] = bytes32(bytes1(0x01)) | bytes32(bytes2(uint16(m2))) | bytes32(uint256(uint128(uint256(int256(a2))))); return execute(tokens, new int128[](2), ops); } function query2( IPool pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, bytes memory data ) public returns (int128[] memory) { Token[] memory tokens = new Token[](2); VelocoreOperation[] memory ops = new VelocoreOperation[](1); tokens[0] = t1 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t1)); tokens[1] = t2 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t2)); ops[0].poolId = bytes32(bytes1(method)) | bytes32(uint256(uint160(address(pool)))); ops[0].tokenInformations = new bytes32[](2); ops[0].data = data; ops[0].tokenInformations[0] = bytes32(bytes1(0x00)) | bytes32(bytes2(uint16(m1))) | bytes32(uint256(uint128(uint256(int256(a1))))); ops[0].tokenInformations[1] = bytes32(bytes1(0x01)) | bytes32(bytes2(uint16(m2))) | bytes32(uint256(uint128(uint256(int256(a2))))); return query(tokens, new int128[](2), ops); } function execute3( IPool pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, address t3, uint8 m3, int128 a3, bytes memory data ) public payable returns (int128[] memory) { Token[] memory tokens = new Token[](3); VelocoreOperation[] memory ops = new VelocoreOperation[](1); tokens[0] = t1 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t1)); tokens[1] = t2 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t2)); tokens[2] = t3 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t3)); ops[0].poolId = bytes32(bytes1(method)) | bytes32(uint256(uint160(address(pool)))); ops[0].tokenInformations = new bytes32[](3); ops[0].data = data; ops[0].tokenInformations[0] = bytes32(bytes1(0x00)) | bytes32(bytes2(uint16(m1))) | bytes32(uint256(uint128(uint256(int256(a1))))); ops[0].tokenInformations[1] = bytes32(bytes1(0x01)) | bytes32(bytes2(uint16(m2))) | bytes32(uint256(uint128(uint256(int256(a2))))); ops[0].tokenInformations[2] = bytes32(bytes1(0x02)) | bytes32(bytes2(uint16(m3))) | bytes32(uint256(uint128(uint256(int256(a3))))); return execute(tokens, new int128[](3), ops); } function query3( IPool pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, address t3, uint8 m3, int128 a3, bytes memory data ) public returns (int128[] memory) { Token[] memory tokens = new Token[](3); VelocoreOperation[] memory ops = new VelocoreOperation[](1); tokens[0] = t1 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t1)); tokens[1] = t2 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t2)); tokens[2] = t3 == address(0) ? NATIVE_TOKEN : toToken(IERC20(t3)); ops[0].poolId = bytes32(bytes1(method)) | bytes32(uint256(uint160(address(pool)))); ops[0].tokenInformations = new bytes32[](3); ops[0].data = data; ops[0].tokenInformations[0] = bytes32(bytes1(0x00)) | bytes32(bytes2(uint16(m1))) | bytes32(uint256(uint128(uint256(int256(a1))))); ops[0].tokenInformations[1] = bytes32(bytes1(0x01)) | bytes32(bytes2(uint16(m2))) | bytes32(uint256(uint128(uint256(int256(a2))))); ops[0].tokenInformations[2] = bytes32(bytes1(0x02)) | bytes32(bytes2(uint16(m3))) | bytes32(uint256(uint128(uint256(int256(a3))))); return query(tokens, new int128[](3), ops); } function execute( Token[] memory tokens, int128[] memory deposits, VelocoreOperation[] memory ops ) internal returns (int128[] memory ret) { bytes memory cd = abi.encodeWithSelector( IVault.execute.selector, tokens, deposits, ops ); ret = new int128[](tokens.length); uint256 len = tokens.length * 32; assembly { let success := delegatecall( gas(), address(), add(cd, 32), mload(cd), 0, 0 ) if iszero(success) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } returndatacopy(ret, 32, add(32, len)) } } function query( Token[] memory tokens, int128[] memory deposits, VelocoreOperation[] memory ops ) internal returns (int128[] memory ret) { bytes memory cd = abi.encodeWithSelector( IVault.query.selector, msg.sender, tokens, deposits, ops ); ret = new int128[](tokens.length); uint256 len = tokens.length * 32; assembly { let success := delegatecall( gas(), address(), add(cd, 32), mload(cd), 0, 0 ) if iszero(success) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } returndatacopy(ret, 32, add(32, len)) } } function _toToken(address a) internal pure returns (Token) { if (a == address(0)) return NATIVE_TOKEN; return toToken(IERC20(a)); } function getPair( address t0, address t1, bool stable ) public view returns (address) { Token t0_ = toToken(IERC20(t0)); Token t1_ = toToken(IERC20(t1)); if (t0 == address(0)) t0_ = NATIVE_TOKEN; if (t1 == address(0)) t1_ = NATIVE_TOKEN; return _getPair(t0_, t1_, stable); } function _getPair( Token t0, Token t1, bool stable ) internal view returns (address) { return address(factory.pools(t0, t1)); } function allPairs(uint256 i) external view returns (address) { return address(factory.poolList(i)); } function allPairsLength() external view returns (uint256) { return factory.poolsLength(); } function quoteAddLiquidity( address tokenA, address tokenB, bool stable, uint256 amountADesired, uint256 amountBDesired ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity) { address pair = getPair(tokenA, tokenB, stable); int128[] memory r = query3( IPool(pair), 0, tokenA, 0, amountADesired.toInt256().toInt128(), tokenB, 0, amountBDesired.toInt256().toInt128(), pair, 0, type(int128).max, "" ); return (int256(-r[0]).toUint256(), int256(-r[1]).toUint256(), int256(r[2]).toUint256()); } function addLiquidity( address tokenA, address tokenB, bool stable, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external payable returns (uint256 amountA, uint256 amountB, uint256 liquidity) { require(to == msg.sender, "'to' must be msg.sender"); require(deadline > block.timestamp, "deadline"); address pair = getPair(tokenA, tokenB, stable); int128[] memory r = execute3( IPool(pair), 0, tokenA, 0, amountADesired.toInt256().toInt128(), tokenB, 0, amountBDesired.toInt256().toInt128(), pair, 0, type(int128).max, "" ); return (int256(-r[0]).toUint256(), int256(-r[1]).toUint256(), int256(r[2]).toUint256()); } function addLiquidityETH( address tokenA, bool stable, uint256 amountADesired, uint256 amountAMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountA, uint256 amountETH, uint256 liquidity) { require(to == msg.sender, "'to' must be msg.sender"); require(deadline > block.timestamp, "deadline"); address pair = getPair(tokenA, address(0), stable); int128[] memory r = execute3( IPool(pair), 0, tokenA, 0, amountADesired.toInt256().toInt128(), address(0), 0, msg.value.toInt256().toInt128(), pair, 0, type(int128).max, "" ); return (int256(-r[0]).toUint256(), int256(-r[1]).toUint256(), int256(r[2]).toUint256()); } function quoteRemoveLiquidity( address tokenA, address tokenB, bool stable, uint256 liquidity ) external returns (uint256 amountA, uint256 amountB) { address pair = getPair(tokenA, tokenB, stable); int128[] memory r = query3( IPool(pair), 0, tokenA, 0, type(int128).max, tokenB, 0, type(int128).max, pair, 0, liquidity.toInt256().toInt128(), "" ); return (int256(r[0]).toUint256(), int256(r[1]).toUint256()); } function removeLiquidity( address tokenA, address tokenB, bool stable, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) public returns (uint256 amountA, uint256 amountB) { require(to == msg.sender, "'to' must be msg.sender"); require(deadline > block.timestamp, "deadline"); address pair = getPair(tokenA, tokenB, stable); int128[] memory r = execute3( IPool(pair), 0, tokenA, 1, -amountAMin.toInt256().toInt128(), tokenB, 1, -amountBMin.toInt256().toInt128(), pair, 0, liquidity.toInt256().toInt128(), "" ); return (int256(r[0]).toUint256(), int256(r[1]).toUint256()); } function removeLiquidityETH( address token, bool, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) public returns (uint256, uint256) { require(to == msg.sender, "'to' must be msg.sender"); require(deadline > block.timestamp, "deadline"); address pair = getPair(token, address(0), false); int128[] memory r = execute3( IPool(pair), 0, token, 1, -amountTokenMin.toInt256().toInt128(), address(0), 1, -amountETHMin.toInt256().toInt128(), pair, 0, liquidity.toInt256().toInt128(), "" ); return (int256(r[0]).toUint256(), int256(r[1]).toUint256()); } function deposit(address p, uint256 a) external { execute2(IPool(p),0, p, 0, a.toInt256().toInt128(), vc, 0, 0, ""); } function withdraw(address p, uint256 a) external { execute2(IPool(p),0,p, 0, -a.toInt256().toInt128(), vc, 0, 0, ""); } }
contracts/interfaces/IConverter.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; interface IConverter { /** * @dev This method is called by Vault.execute(). * Vault will transfer any positively specified amounts directly to the IConverter before calling velocore__convert. * * Instead of returning balance delta numbers, IConverter is expected to directly transfer outputs back to vault. * Vault will measure the difference, and credit the user. */ function velocore__convert(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data) external; }
contracts/interfaces/IVC.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; interface IVC is IERC20 { function dispense() external returns (uint256); function emissionRate() external view returns (uint256); }
lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
contracts/Common.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; contract Common { }
lib/openzeppelin-contracts/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
lib/openzeppelin-contracts/contracts/token/ERC1155/extensions/ERC1155Supply.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC1155/extensions/ERC1155Supply.sol) pragma solidity ^0.8.0; import "../ERC1155.sol"; /** * @dev Extension of ERC1155 that adds tracking of total supply per id. * * Useful for scenarios where Fungible and Non-fungible tokens have to be * clearly identified. Note: While a totalSupply of 1 might mean the * corresponding is an NFT, there is no guarantees that no other token with the * same id are not going to be minted. */ abstract contract ERC1155Supply is ERC1155 { mapping(uint256 => uint256) private _totalSupply; /** * @dev Total amount of tokens in with a given id. */ function totalSupply(uint256 id) public view virtual returns (uint256) { return _totalSupply[id]; } /** * @dev Indicates whether any token exist with a given id, or not. */ function exists(uint256 id) public view virtual returns (bool) { return ERC1155Supply.totalSupply(id) > 0; } /** * @dev See {ERC1155-_beforeTokenTransfer}. */ function _beforeTokenTransfer( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual override { super._beforeTokenTransfer(operator, from, to, ids, amounts, data); if (from == address(0)) { for (uint256 i = 0; i < ids.length; ++i) { _totalSupply[ids[i]] += amounts[i]; } } if (to == address(0)) { for (uint256 i = 0; i < ids.length; ++i) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 supply = _totalSupply[id]; require(supply >= amount, "ERC1155: burn amount exceeds totalSupply"); unchecked { _totalSupply[id] = supply - amount; } } } } }
lib/openzeppelin-contracts/contracts/utils/StorageSlot.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
lib/openzeppelin-contracts/contracts/utils/introspection/ERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
contracts/pools/PoolWithLPToken.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "contracts/interfaces/IVault.sol"; import "contracts/lib/Token.sol"; import "./Pool.sol"; /** * @dev a base contract for pools with single ERC20 lp token. * * Two notable features: * <1> * Inspired by composable pools of Balancer, it mints MAX_SUPPLY tokens to the vault on initialization, allowing this pool to 'mint' lp tokens from velocore__execute(). * However, the initial mint only happens in vault's perspective; balanceOf() and totalSupply() is customized to trick the vault into thinking it has MAX_SUPPLY tokens. * when msg.sender != vault, the view functions behave normally. * * <2> * the vault has max allowance on every addresses by default, and this can't be changed. */ abstract contract PoolWithLPToken is Pool, IERC20 { uint128 constant MAX_SUPPLY = uint128(type(uint112).max); string public name; string public symbol; mapping(address => uint256) _balanceOf; mapping(address => mapping(address => uint256)) _allowance; function _initialize(string memory name_, string memory symbol_) internal { name = name_; symbol = symbol_; _mintVirtualSupply(); } function _mintVirtualSupply() internal { _balanceOf[address(vault)] = MAX_SUPPLY; vault.notifyInitialSupply(toToken(this), 0, MAX_SUPPLY); // this sets pool balances to the given value. } /** * @dev due to the mechanism of 'minting' by transferring, mint and burn events behave weirdly. * this function should be called whenever new tokens are created by transferring. * these simulate minting and burning from/to the vault. */ function _simulateMint(uint256 amount) internal { emit Transfer(address(0), address(vault), amount); } function _simulateBurn(uint256 amount) internal { emit Transfer(address(vault), address(0), amount); } /** * @dev vault balance is subtracted by pool balance to behave "normally" */ function balanceOf(address addr) external view returns (uint256) { if (msg.sender != address(vault) && addr == address(vault)) { unchecked { return _balanceOf[addr] - _getPoolBalance(toToken(this)); } } return _balanceOf[addr]; } function decimals() external view virtual returns (uint8) { return 18; } function allowance(address from, address spender) external view returns (uint256) { return (spender == address(vault)) ? type(uint256).max : _allowance[from][spender]; } /** * @dev subtracted by pool balance to behave "normally" */ function totalSupply() public view virtual returns (uint256) { return MAX_SUPPLY - _getPoolBalance(toToken(this)); } function approve(address spender, uint256 amount) public virtual returns (bool) { _allowance[msg.sender][spender] = amount; emit Approval(msg.sender, spender, amount); return true; } function increaseAllowance(address _spender, uint256 _addedValue) public returns (bool) { approve(_spender, _allowance[msg.sender][_spender] + _addedValue); return true; } function decreaseAllowance(address _spender, uint256 _subtractedValue) public returns (bool) { approve(_spender, _allowance[msg.sender][_spender] - _subtractedValue); return true; } function transfer(address to, uint256 amount) public virtual returns (bool) { _balanceOf[msg.sender] -= amount; unchecked { _balanceOf[to] += amount; } emit Transfer(msg.sender, to, amount); return true; } function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) { if (msg.sender != address(vault)) { uint256 allowed = _allowance[from][msg.sender]; if (allowed != type(uint256).max) _allowance[from][msg.sender] = allowed - amount; } _balanceOf[from] -= amount; unchecked { _balanceOf[to] += amount; } emit Transfer(from, to, amount); return true; } }
lib/prb-math/src/ud2x18/Errors.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
lib/prb-math/src/sd59x18/Helpers.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
lib/prb-math/src/ud2x18/ValueType.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
contracts/interfaces/IBribe.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "./IGauge.sol"; import "./IPool.sol"; interface IBribe is IPool { /** * @dev This method is called when someone vote/harvest from/to a @param gauge, * and when this IBribe happens to be attached to the gauge. * * Attachment can happen without IBribe's permission. Implementations must verify that @param gauge is correct. * * Returns balance deltas; their net differences are credited as bribe. * deltaExternal must be zero or negative; Vault will take specified amounts from the contract's balance * * @param gauge the gauge to bribe for. * @param elapsed elapsed time after last call; can be used to save gas. * @return bribeTokens list of tokens to bribe * @return deltaGauge same order as bribeTokens, the desired change of gauge balance * @return deltaPool same order as bribeTokens, the desired change of pool balance * @return deltaExternal same order as bribeTokens, the vault will pull this amount out from the bribe contract with transferFrom() */ function velocore__bribe(IGauge gauge, uint256 elapsed) external returns ( Token[] memory bribeTokens, int128[] memory deltaGauge, int128[] memory deltaPool, int128[] memory deltaExternal ); function bribeTokens(IGauge gauge) external view returns (Token[] memory); function bribeRates(IGauge gauge) external view returns (uint256[] memory); }
lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
lib/prb-math/src/ud60x18/Math.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ /// /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
lib/prb-math/src/ud2x18/Constants.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
lib/openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
contracts/lib/PoolBalanceLib.sol
// SPDX-License-Identifier: AUNLICENSED pragma solidity ^0.8.0; import "openzeppelin/utils/math/SafeCast.sol"; // a pool's balances are stored as two uint128; // the only difference between them is that new emissions are credited into the gauge balance. // the pool can use them in any way they want. type PoolBalance is bytes32; library PoolBalanceLib { using PoolBalanceLib for PoolBalance; using SafeCast for uint256; using SafeCast for int256; function gaugeHalf(PoolBalance self) internal pure returns (uint256) { return uint128(bytes16(PoolBalance.unwrap(self))); } function poolHalf(PoolBalance self) internal pure returns (uint256) { return uint128(uint256(PoolBalance.unwrap(self))); } function pack(uint256 a, uint256 b) internal pure returns (PoolBalance) { uint128 a_ = uint128(a); uint128 b_ = uint128(b); require(b == b_ && a == a_, "overflow"); return PoolBalance.wrap(bytes32(bytes16(a_)) | bytes32(uint256(b_))); } function credit(PoolBalance self, int256 dGauge, int256 dPool) internal pure returns (PoolBalance) { return pack( (int256(uint256(self.gaugeHalf())) + dGauge).toUint256(), (int256(uint256(self.poolHalf())) + dPool).toUint256() ); } function credit(PoolBalance self, int256 dPool) internal pure returns (PoolBalance) { return pack(self.gaugeHalf(), (int256(uint256(self.poolHalf())) + dPool).toUint256()); } }
lib/prb-math/src/sd1x18/Constants.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
lib/openzeppelin-contracts/contracts/token/ERC1155/ERC1155.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/ERC1155.sol) pragma solidity ^0.8.0; import "./IERC1155.sol"; import "./IERC1155Receiver.sol"; import "./extensions/IERC1155MetadataURI.sol"; import "../../utils/Address.sol"; import "../../utils/Context.sol"; import "../../utils/introspection/ERC165.sol"; /** * @dev Implementation of the basic standard multi-token. * See https://eips.ethereum.org/EIPS/eip-1155 * Originally based on code by Enjin: https://github.com/enjin/erc-1155 * * _Available since v3.1._ */ contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI { using Address for address; // Mapping from token ID to account balances mapping(uint256 => mapping(address => uint256)) private _balances; // Mapping from account to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json string private _uri; /** * @dev See {_setURI}. */ constructor(string memory uri_) { _setURI(uri_); } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC1155).interfaceId || interfaceId == type(IERC1155MetadataURI).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC1155MetadataURI-uri}. * * This implementation returns the same URI for *all* token types. It relies * on the token type ID substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP]. * * Clients calling this function must replace the `\{id\}` substring with the * actual token type ID. */ function uri(uint256) public view virtual override returns (string memory) { return _uri; } /** * @dev See {IERC1155-balanceOf}. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) public view virtual override returns (uint256) { require(account != address(0), "ERC1155: address zero is not a valid owner"); return _balances[id][account]; } /** * @dev See {IERC1155-balanceOfBatch}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch( address[] memory accounts, uint256[] memory ids ) public view virtual override returns (uint256[] memory) { require(accounts.length == ids.length, "ERC1155: accounts and ids length mismatch"); uint256[] memory batchBalances = new uint256[](accounts.length); for (uint256 i = 0; i < accounts.length; ++i) { batchBalances[i] = balanceOf(accounts[i], ids[i]); } return batchBalances; } /** * @dev See {IERC1155-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC1155-isApprovedForAll}. */ function isApprovedForAll(address account, address operator) public view virtual override returns (bool) { return _operatorApprovals[account][operator]; } /** * @dev See {IERC1155-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes memory data ) public virtual override { require( from == _msgSender() || isApprovedForAll(from, _msgSender()), "ERC1155: caller is not token owner or approved" ); _safeTransferFrom(from, to, id, amount, data); } /** * @dev See {IERC1155-safeBatchTransferFrom}. */ function safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) public virtual override { require( from == _msgSender() || isApprovedForAll(from, _msgSender()), "ERC1155: caller is not token owner or approved" ); _safeBatchTransferFrom(from, to, ids, amounts, data); } /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { require(to != address(0), "ERC1155: transfer to the zero address"); address operator = _msgSender(); uint256[] memory ids = _asSingletonArray(id); uint256[] memory amounts = _asSingletonArray(amount); _beforeTokenTransfer(operator, from, to, ids, amounts, data); uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: insufficient balance for transfer"); unchecked { _balances[id][from] = fromBalance - amount; } _balances[id][to] += amount; emit TransferSingle(operator, from, to, id, amount); _afterTokenTransfer(operator, from, to, ids, amounts, data); _doSafeTransferAcceptanceCheck(operator, from, to, id, amount, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function _safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); require(to != address(0), "ERC1155: transfer to the zero address"); address operator = _msgSender(); _beforeTokenTransfer(operator, from, to, ids, amounts, data); for (uint256 i = 0; i < ids.length; ++i) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: insufficient balance for transfer"); unchecked { _balances[id][from] = fromBalance - amount; } _balances[id][to] += amount; } emit TransferBatch(operator, from, to, ids, amounts); _afterTokenTransfer(operator, from, to, ids, amounts, data); _doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, amounts, data); } /** * @dev Sets a new URI for all token types, by relying on the token type ID * substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP]. * * By this mechanism, any occurrence of the `\{id\}` substring in either the * URI or any of the amounts in the JSON file at said URI will be replaced by * clients with the token type ID. * * For example, the `https://token-cdn-domain/\{id\}.json` URI would be * interpreted by clients as * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json` * for token type ID 0x4cce0. * * See {uri}. * * Because these URIs cannot be meaningfully represented by the {URI} event, * this function emits no events. */ function _setURI(string memory newuri) internal virtual { _uri = newuri; } /** * @dev Creates `amount` tokens of token type `id`, and assigns them to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _mint(address to, uint256 id, uint256 amount, bytes memory data) internal virtual { require(to != address(0), "ERC1155: mint to the zero address"); address operator = _msgSender(); uint256[] memory ids = _asSingletonArray(id); uint256[] memory amounts = _asSingletonArray(amount); _beforeTokenTransfer(operator, address(0), to, ids, amounts, data); _balances[id][to] += amount; emit TransferSingle(operator, address(0), to, id, amount); _afterTokenTransfer(operator, address(0), to, ids, amounts, data); _doSafeTransferAcceptanceCheck(operator, address(0), to, id, amount, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function _mintBatch( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { require(to != address(0), "ERC1155: mint to the zero address"); require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); address operator = _msgSender(); _beforeTokenTransfer(operator, address(0), to, ids, amounts, data); for (uint256 i = 0; i < ids.length; i++) { _balances[ids[i]][to] += amounts[i]; } emit TransferBatch(operator, address(0), to, ids, amounts); _afterTokenTransfer(operator, address(0), to, ids, amounts, data); _doSafeBatchTransferAcceptanceCheck(operator, address(0), to, ids, amounts, data); } /** * @dev Destroys `amount` tokens of token type `id` from `from` * * Emits a {TransferSingle} event. * * Requirements: * * - `from` cannot be the zero address. * - `from` must have at least `amount` tokens of token type `id`. */ function _burn(address from, uint256 id, uint256 amount) internal virtual { require(from != address(0), "ERC1155: burn from the zero address"); address operator = _msgSender(); uint256[] memory ids = _asSingletonArray(id); uint256[] memory amounts = _asSingletonArray(amount); _beforeTokenTransfer(operator, from, address(0), ids, amounts, ""); uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: burn amount exceeds balance"); unchecked { _balances[id][from] = fromBalance - amount; } emit TransferSingle(operator, from, address(0), id, amount); _afterTokenTransfer(operator, from, address(0), ids, amounts, ""); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. */ function _burnBatch(address from, uint256[] memory ids, uint256[] memory amounts) internal virtual { require(from != address(0), "ERC1155: burn from the zero address"); require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch"); address operator = _msgSender(); _beforeTokenTransfer(operator, from, address(0), ids, amounts, ""); for (uint256 i = 0; i < ids.length; i++) { uint256 id = ids[i]; uint256 amount = amounts[i]; uint256 fromBalance = _balances[id][from]; require(fromBalance >= amount, "ERC1155: burn amount exceeds balance"); unchecked { _balances[id][from] = fromBalance - amount; } } emit TransferBatch(operator, from, address(0), ids, amounts); _afterTokenTransfer(operator, from, address(0), ids, amounts, ""); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { require(owner != operator, "ERC1155: setting approval status for self"); _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Hook that is called before any token transfer. This includes minting * and burning, as well as batched variants. * * The same hook is called on both single and batched variants. For single * transfers, the length of the `ids` and `amounts` arrays will be 1. * * Calling conditions (for each `id` and `amount` pair): * * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens * of token type `id` will be transferred to `to`. * - When `from` is zero, `amount` tokens of token type `id` will be minted * for `to`. * - when `to` is zero, `amount` of ``from``'s tokens of token type `id` * will be burned. * - `from` and `to` are never both zero. * - `ids` and `amounts` have the same, non-zero length. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual {} /** * @dev Hook that is called after any token transfer. This includes minting * and burning, as well as batched variants. * * The same hook is called on both single and batched variants. For single * transfers, the length of the `id` and `amount` arrays will be 1. * * Calling conditions (for each `id` and `amount` pair): * * - When `from` and `to` are both non-zero, `amount` of ``from``'s tokens * of token type `id` will be transferred to `to`. * - When `from` is zero, `amount` tokens of token type `id` will be minted * for `to`. * - when `to` is zero, `amount` of ``from``'s tokens of token type `id` * will be burned. * - `from` and `to` are never both zero. * - `ids` and `amounts` have the same, non-zero length. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual {} function _doSafeTransferAcceptanceCheck( address operator, address from, address to, uint256 id, uint256 amount, bytes memory data ) private { if (to.isContract()) { try IERC1155Receiver(to).onERC1155Received(operator, from, id, amount, data) returns (bytes4 response) { if (response != IERC1155Receiver.onERC1155Received.selector) { revert("ERC1155: ERC1155Receiver rejected tokens"); } } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1155: transfer to non-ERC1155Receiver implementer"); } } } function _doSafeBatchTransferAcceptanceCheck( address operator, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) private { if (to.isContract()) { try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, amounts, data) returns ( bytes4 response ) { if (response != IERC1155Receiver.onERC1155BatchReceived.selector) { revert("ERC1155: ERC1155Receiver rejected tokens"); } } catch Error(string memory reason) { revert(reason); } catch { revert("ERC1155: transfer to non-ERC1155Receiver implementer"); } } } function _asSingletonArray(uint256 element) private pure returns (uint256[] memory) { uint256[] memory array = new uint256[](1); array[0] = element; return array; } }
contracts/interfaces/IPool.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; interface IPool { function poolParams() external view returns (bytes memory); }
lib/openzeppelin-contracts/contracts/token/ERC1155/IERC1155Receiver.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
contracts/pools/xyk/XYKPoolFactory.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "../Satellite.sol"; import "./XYKPool.sol"; contract XYKPoolFactory is Satellite { event PoolCreated(XYKPool indexed pool, Token t1, Token t2); using TokenLib for Token; using UncheckedMemory for Token[]; using UncheckedMemory for uint256[]; address immutable WETH_ADDRESS; uint32 fee1e9; uint32 decay = 4294955811; string name; XYKPool[] public poolList; mapping(Token => mapping(Token => XYKPool)) public pools; mapping(XYKPool => bool) public isPool; event FeeChanged(uint256 fee1e18); event DecayChanged(uint256 decay); function setFee(uint32 fee1e9_) external authenticate { fee1e9 = fee1e9_; require(fee1e9 <= 0.1e9); emit FeeChanged(fee1e9 * uint256(1e8)); } function setDecay(uint32 decay_) external authenticate { decay = decay_; emit DecayChanged(decay_); } function getPools(uint256 begin, uint256 maxLength) external view returns (XYKPool[] memory pools) { uint256 len = poolList.length <= begin ? 0 : Math.min(poolList.length - begin, maxLength); pools = new XYKPool[](len); unchecked { for (uint256 i = begin; i < begin + len; i++) { pools[i] = poolList[i]; } } } function poolsLength() external view returns (uint256) { return poolList.length; } constructor(IVault vault_, address weth, string memory name_) Satellite(vault_, address(this)) { WETH_ADDRESS = weth; name = name_; } function deploy(Token quoteToken, Token baseToken) external returns (XYKPool) { require(!(baseToken == quoteToken)); require(address(pools[quoteToken][baseToken]) == address(0)); if (!(quoteToken < baseToken)) { (quoteToken, baseToken) = (baseToken, quoteToken); } XYKPool ret = new XYKPool( vault, string(abi.encodePacked(name, " LP: ", quoteToken.symbol(), " + ", baseToken.symbol())), string(abi.encodePacked(quoteToken.symbol(), "-", baseToken.symbol(), "-VLP")), quoteToken, baseToken, fee1e9, decay, WETH_ADDRESS ); poolList.push(ret); isPool[ret] = true; pools[baseToken][quoteToken] = ret; pools[quoteToken][baseToken] = ret; emit PoolCreated(ret, quoteToken, baseToken); return ret; } }
lib/prb-math/src/ud60x18/Conversions.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
contracts/interfaces/IFacet.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; interface IFacet { function initializeFacet() external; }
lib/openzeppelin-contracts/contracts/utils/math/SafeCast.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.0; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. * * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing * all math on `uint256` and `int256` and then downcasting. */ library SafeCast { /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toUint248(uint256 value) internal pure returns (uint248) { require(value <= type(uint248).max, "SafeCast: value doesn't fit in 248 bits"); return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toUint240(uint256 value) internal pure returns (uint240) { require(value <= type(uint240).max, "SafeCast: value doesn't fit in 240 bits"); return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toUint232(uint256 value) internal pure returns (uint232) { require(value <= type(uint232).max, "SafeCast: value doesn't fit in 232 bits"); return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.2._ */ function toUint224(uint256 value) internal pure returns (uint224) { require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits"); return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toUint216(uint256 value) internal pure returns (uint216) { require(value <= type(uint216).max, "SafeCast: value doesn't fit in 216 bits"); return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toUint208(uint256 value) internal pure returns (uint208) { require(value <= type(uint208).max, "SafeCast: value doesn't fit in 208 bits"); return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toUint200(uint256 value) internal pure returns (uint200) { require(value <= type(uint200).max, "SafeCast: value doesn't fit in 200 bits"); return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toUint192(uint256 value) internal pure returns (uint192) { require(value <= type(uint192).max, "SafeCast: value doesn't fit in 192 bits"); return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toUint184(uint256 value) internal pure returns (uint184) { require(value <= type(uint184).max, "SafeCast: value doesn't fit in 184 bits"); return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toUint176(uint256 value) internal pure returns (uint176) { require(value <= type(uint176).max, "SafeCast: value doesn't fit in 176 bits"); return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toUint168(uint256 value) internal pure returns (uint168) { require(value <= type(uint168).max, "SafeCast: value doesn't fit in 168 bits"); return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toUint160(uint256 value) internal pure returns (uint160) { require(value <= type(uint160).max, "SafeCast: value doesn't fit in 160 bits"); return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toUint152(uint256 value) internal pure returns (uint152) { require(value <= type(uint152).max, "SafeCast: value doesn't fit in 152 bits"); return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toUint144(uint256 value) internal pure returns (uint144) { require(value <= type(uint144).max, "SafeCast: value doesn't fit in 144 bits"); return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toUint136(uint256 value) internal pure returns (uint136) { require(value <= type(uint136).max, "SafeCast: value doesn't fit in 136 bits"); return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v2.5._ */ function toUint128(uint256 value) internal pure returns (uint128) { require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits"); return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toUint120(uint256 value) internal pure returns (uint120) { require(value <= type(uint120).max, "SafeCast: value doesn't fit in 120 bits"); return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toUint112(uint256 value) internal pure returns (uint112) { require(value <= type(uint112).max, "SafeCast: value doesn't fit in 112 bits"); return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toUint104(uint256 value) internal pure returns (uint104) { require(value <= type(uint104).max, "SafeCast: value doesn't fit in 104 bits"); return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.2._ */ function toUint96(uint256 value) internal pure returns (uint96) { require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits"); return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toUint88(uint256 value) internal pure returns (uint88) { require(value <= type(uint88).max, "SafeCast: value doesn't fit in 88 bits"); return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toUint80(uint256 value) internal pure returns (uint80) { require(value <= type(uint80).max, "SafeCast: value doesn't fit in 80 bits"); return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toUint72(uint256 value) internal pure returns (uint72) { require(value <= type(uint72).max, "SafeCast: value doesn't fit in 72 bits"); return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v2.5._ */ function toUint64(uint256 value) internal pure returns (uint64) { require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits"); return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toUint56(uint256 value) internal pure returns (uint56) { require(value <= type(uint56).max, "SafeCast: value doesn't fit in 56 bits"); return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toUint48(uint256 value) internal pure returns (uint48) { require(value <= type(uint48).max, "SafeCast: value doesn't fit in 48 bits"); return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toUint40(uint256 value) internal pure returns (uint40) { require(value <= type(uint40).max, "SafeCast: value doesn't fit in 40 bits"); return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v2.5._ */ function toUint32(uint256 value) internal pure returns (uint32) { require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits"); return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toUint24(uint256 value) internal pure returns (uint24) { require(value <= type(uint24).max, "SafeCast: value doesn't fit in 24 bits"); return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v2.5._ */ function toUint16(uint256 value) internal pure returns (uint16) { require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits"); return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v2.5._ */ function toUint8(uint256 value) internal pure returns (uint8) { require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits"); return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. * * _Available since v3.0._ */ function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits * * _Available since v4.7._ */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); require(downcasted == value, "SafeCast: value doesn't fit in 248 bits"); } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits * * _Available since v4.7._ */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); require(downcasted == value, "SafeCast: value doesn't fit in 240 bits"); } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits * * _Available since v4.7._ */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); require(downcasted == value, "SafeCast: value doesn't fit in 232 bits"); } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits * * _Available since v4.7._ */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); require(downcasted == value, "SafeCast: value doesn't fit in 224 bits"); } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits * * _Available since v4.7._ */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); require(downcasted == value, "SafeCast: value doesn't fit in 216 bits"); } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits * * _Available since v4.7._ */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); require(downcasted == value, "SafeCast: value doesn't fit in 208 bits"); } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits * * _Available since v4.7._ */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); require(downcasted == value, "SafeCast: value doesn't fit in 200 bits"); } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits * * _Available since v4.7._ */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); require(downcasted == value, "SafeCast: value doesn't fit in 192 bits"); } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits * * _Available since v4.7._ */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); require(downcasted == value, "SafeCast: value doesn't fit in 184 bits"); } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits * * _Available since v4.7._ */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); require(downcasted == value, "SafeCast: value doesn't fit in 176 bits"); } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits * * _Available since v4.7._ */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); require(downcasted == value, "SafeCast: value doesn't fit in 168 bits"); } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits * * _Available since v4.7._ */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); require(downcasted == value, "SafeCast: value doesn't fit in 160 bits"); } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits * * _Available since v4.7._ */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); require(downcasted == value, "SafeCast: value doesn't fit in 152 bits"); } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits * * _Available since v4.7._ */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); require(downcasted == value, "SafeCast: value doesn't fit in 144 bits"); } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits * * _Available since v4.7._ */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); require(downcasted == value, "SafeCast: value doesn't fit in 136 bits"); } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits * * _Available since v3.1._ */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); require(downcasted == value, "SafeCast: value doesn't fit in 128 bits"); } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits * * _Available since v4.7._ */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); require(downcasted == value, "SafeCast: value doesn't fit in 120 bits"); } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits * * _Available since v4.7._ */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); require(downcasted == value, "SafeCast: value doesn't fit in 112 bits"); } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits * * _Available since v4.7._ */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); require(downcasted == value, "SafeCast: value doesn't fit in 104 bits"); } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits * * _Available since v4.7._ */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); require(downcasted == value, "SafeCast: value doesn't fit in 96 bits"); } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits * * _Available since v4.7._ */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); require(downcasted == value, "SafeCast: value doesn't fit in 88 bits"); } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits * * _Available since v4.7._ */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); require(downcasted == value, "SafeCast: value doesn't fit in 80 bits"); } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits * * _Available since v4.7._ */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); require(downcasted == value, "SafeCast: value doesn't fit in 72 bits"); } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits * * _Available since v3.1._ */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); require(downcasted == value, "SafeCast: value doesn't fit in 64 bits"); } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits * * _Available since v4.7._ */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); require(downcasted == value, "SafeCast: value doesn't fit in 56 bits"); } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits * * _Available since v4.7._ */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); require(downcasted == value, "SafeCast: value doesn't fit in 48 bits"); } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits * * _Available since v4.7._ */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); require(downcasted == value, "SafeCast: value doesn't fit in 40 bits"); } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits * * _Available since v3.1._ */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); require(downcasted == value, "SafeCast: value doesn't fit in 32 bits"); } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits * * _Available since v4.7._ */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); require(downcasted == value, "SafeCast: value doesn't fit in 24 bits"); } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits * * _Available since v3.1._ */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); require(downcasted == value, "SafeCast: value doesn't fit in 16 bits"); } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits * * _Available since v3.1._ */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); require(downcasted == value, "SafeCast: value doesn't fit in 8 bits"); } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. * * _Available since v3.0._ */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256"); return int256(value); } }
lib/openzeppelin-contracts/contracts/token/ERC721/extensions/IERC721Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
lib/prb-math/src/sd59x18/Constants.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
lib/openzeppelin-contracts/contracts/token/ERC1155/IERC1155.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155 is IERC165 { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll(address indexed account, address indexed operator, bool approved); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch( address[] calldata accounts, uint256[] calldata ids ) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external; }
lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
lib/prb-math/src/sd1x18/ValueType.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
lib/prb-math/src/Common.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
lib/prb-math/src/ud60x18/ValueType.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
lib/prb-math/src/UD60x18.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
contracts/interfaces/IAuthorizer.sol
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform(bytes32 actionId, address account, address where) external view returns (bool); }
lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
lib/prb-math/src/ud60x18/Errors.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
contracts/pools/Satellite.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "contracts/interfaces/IVault.sol"; import "contracts/Common.sol"; /** * @dev a base contract for peripheral contracts. * * 1. delegates access control to the vault * 2. use Diamond.yul's 'read' intrinsic function to read its storages * */ contract Satellite is Common { IVault immutable vault; address immutable factory_; constructor(IVault vault_, address factory) { vault = vault_; factory_ = factory; } modifier onlyVault() { require(msg.sender == address(vault), "only vault"); _; } function _readVaultStorage(bytes32 slot) internal view returns (bytes32 ret) { address vaultAddress = address(vault); assembly ("memory-safe") { mstore(0, 0x7265616400000000000000000000000000000000000000000000000000000000) mstore(4, slot) let success := staticcall(gas(), vaultAddress, 0, 36, 0, 32) if iszero(success) { revert(0, 0) } ret := mload(0) } } modifier authenticate() { require( IAuthorizer(address(uint160(uint256(_readVaultStorage(SSLOT_HYPERCORE_AUTHORIZER))))).canPerform( keccak256(abi.encodePacked(bytes32(uint256(uint160(factory_))), msg.sig)), msg.sender, address(this) ), "unauthorized" ); _; } }
lib/prb-math/src/ud60x18/Constants.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
lib/prb-math/src/sd59x18/Errors.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
contracts/lib/UncheckedMemory.sol
// SPDX-License-Identifier: AUNLICENSED pragma solidity ^0.8.0; import {Token} from "contracts/lib/Token.sol"; // solidity by default perform bound check for every array access. // we define functions for unchecked access here library UncheckedMemory { using UncheckedMemory for bytes32[]; using UncheckedMemory for uint256[]; using UncheckedMemory for Token[]; function u(bytes32[] memory self, uint256 i) internal view returns (bytes32 ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(bytes32[] memory self, uint256 i, bytes32 v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } function u(uint256[] memory self, uint256 i) internal view returns (uint256 ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(uint256[] memory self, uint256 i, uint256 v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } function u(int128[] memory self, uint256 i) internal view returns (int128 ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(int128[] memory self, uint256 i, int128 v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } // uc instead u for calldata array; as solidity does not support type-location overloading. function uc(Token[] calldata self, uint256 i) internal view returns (Token ret) { assembly ("memory-safe") { ret := calldataload(add(self.offset, mul(32, i))) } } function u(Token[] memory self, uint256 i) internal view returns (Token ret) { assembly ("memory-safe") { ret := mload(add(self, mul(32, add(i, 1)))) } } function u(Token[] memory self, uint256 i, Token v) internal view { assembly ("memory-safe") { mstore(add(self, mul(32, add(i, 1))), v) } } } using UncheckedMemory for bytes32[]; using UncheckedMemory for uint256[]; using UncheckedMemory for Token[]; // binary search on sorted arrays function _binarySearch(Token[] calldata arr, Token token) view returns (uint256) { if (arr.length == 0) return type(uint256).max; uint256 start = 0; uint256 end = arr.length - 1; unchecked { while (start <= end) { uint256 mid = start + (end - start) / 2; if (arr.uc(mid) == token) { return mid; } else if (arr.uc(mid) < token) { start = mid + 1; } else { if (mid == 0) return type(uint256).max; end = mid - 1; } } } return type(uint256).max; } // binary search on sorted arrays, memory array version function _binarySearchM(Token[] memory arr, Token token) view returns (uint256) { if (arr.length == 0) return type(uint256).max; uint256 start = 0; uint256 end = arr.length - 1; unchecked { while (start <= end) { uint256 mid = start + (end - start) / 2; if (arr.u(mid) == token) { return mid; } else if (arr.u(mid) < token) { start = mid + 1; } else { if (mid == 0) return type(uint256).max; end = mid - 1; } } } return type(uint256).max; }
lib/openzeppelin-contracts/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC1155/extensions/IERC1155MetadataURI.sol) pragma solidity ^0.8.0; import "../IERC1155.sol"; /** * @dev Interface of the optional ERC1155MetadataExtension interface, as defined * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[EIP]. * * _Available since v3.1._ */ interface IERC1155MetadataURI is IERC1155 { /** * @dev Returns the URI for token type `id`. * * If the `\{id\}` substring is present in the URI, it must be replaced by * clients with the actual token type ID. */ function uri(uint256 id) external view returns (string memory); }
lib/prb-math/src/sd59x18/Math.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
contracts/interfaces/IGauge.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "contracts/interfaces/IPool.sol"; /** * Gauges are just pools. * instead of velocore__execute, they interact with velocore__gauge. * (un)staking is done by putting/extracting staking token (usually LP token) from/into the pool with velocore__gauge. * harvesting is done by setting the staking amount to zero. */ interface IGauge is IPool { /** * @dev This method is called by Vault.execute(). * the parameters and return values are the same as velocore__execute. * The only difference is that the vault will call velocore__emission before calling velocore__gauge. */ function velocore__gauge( address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data ) external returns (int128[] memory deltaGauge, int128[] memory deltaPool); /** * @dev This method is called by Vault.execute() before calling velocore__emission or changing votes. * * The vault will credit emitted VC into the gauge balance. * IGauge is expected to update its internal ledger. * @param newEmissions newly emitted VCs since last emission */ function velocore__emission(uint256 newEmissions) external; function stakeableTokens() external view returns (Token[] memory); function stakedTokens( address user ) external view returns (uint256[] memory); function stakedTokens() external view returns (uint256[] memory); function emissionShare(address user) external view returns (uint256); function naturalBribes() external view returns (Token[] memory); }
contracts/pools/SingleTokenGauge.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "./PoolWithLPToken.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/lib/RPow.sol"; import "contracts/lib/UncheckedMemory.sol"; import "openzeppelin/utils/math/SafeCast.sol"; import "openzeppelin/utils/structs/EnumerableSet.sol"; /** * @dev a base contract for gauges with single stakes. * * pretty standard Masterchef-like design. * */ struct StakerInformation { uint128 staked; uint128 emissionPerStake1e9AtLastClaim; } contract SingleTokenGauge is Pool, IGauge { using UncheckedMemory for uint256[]; using UncheckedMemory for int128[]; using UncheckedMemory for Token[]; using TokenLib for Token; using SafeCast for uint256; using SafeCast for int256; uint128 emissionPerStake1e9; mapping(address => StakerInformation) stakerInformation; Token internal immutable emissionToken; Token public immutable stake; constructor( IVault vault_, Token stake_, IBribe bribe ) Pool(vault_, address(this), msg.sender) { emissionToken = vault_.emissionToken(); vault_.attachBribe(this, bribe); stake = stake_; } /** * called by the vault to nofity new emission */ function velocore__emission(uint256 newEmissions) external onlyVault { if (newEmissions > 0) { uint256 totalStakes = _getGaugeBalance(stake); if (totalStakes > 0) { unchecked { // totalSupply of emissionToken * 1e9 < uint128_max emissionPerStake1e9 += uint128( (newEmissions * 1e9) / totalStakes ); } } } } function velocore__gauge( address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata ) external virtual onlyVault returns (int128[] memory deltaGauge, int128[] memory deltaPool) { deltaGauge = new int128[](tokens.length); deltaPool = new int128[](tokens.length); uint256 stakeIndex = _binarySearch(tokens, stake); // assumed to exist uint256 emissionIndex = _binarySearch(tokens, emissionToken); unchecked { // total emissions cannot be greater than the total supply of the emissionToken (200Me18). log10(2^128) - 18 - 9 - 8 > 0; therefore it doesnt overflow. uint256 claimed = ((emissionPerStake1e9 - stakerInformation[user].emissionPerStake1e9AtLastClaim) * stakerInformation[user].staked) / 1e9; // the total supply of the emissionToken = 200Me18 < int128_max deltaGauge.u(emissionIndex, -int128(int256(claimed))); } if (stakeIndex != type(uint256).max) { stakerInformation[user].staked = (int256( uint256(stakerInformation[user].staked) ) + amounts.u(stakeIndex)).toUint256().toUint128(); deltaGauge.u(stakeIndex, amounts.u(stakeIndex)); } stakerInformation[user] .emissionPerStake1e9AtLastClaim = emissionPerStake1e9; } function stakeableTokens() external view virtual returns (Token[] memory) { Token v = stake; assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function stakedTokens( address user ) external view virtual returns (uint256[] memory) { uint256 v = stakerInformation[user].staked; assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function stakedTokens() external view virtual returns (uint256[] memory) { uint256 v = _getGaugeBalance(stake); assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function emissionShare( address user ) external view virtual returns (uint256) { uint256 gb = _getGaugeBalance(stake); if (gb == 0) return 0; unchecked { return (stakerInformation[user].staked * uint256(1e18)) / gb; } } function naturalBribes() external view returns (Token[] memory) { return ISwap(stake.addr()).listedTokens(); } }
lib/prb-math/src/ud2x18/Casting.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
contracts/pools/Pool.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "contracts/lib/PoolBalanceLib.sol"; import "contracts/lib/UncheckedMemory.sol"; import "contracts/interfaces/IVault.sol"; import "contracts/interfaces/ISwap.sol"; import "contracts/interfaces/IAuthorizer.sol"; import "contracts/VaultStorage.sol"; import "./Satellite.sol"; /** * @dev a base contract for pools. * * - holds pool-specific slot of vault's storage as an immutable value. * - provides getters for the slot. * */ abstract contract Pool is IPool, Satellite { using PoolBalanceLib for PoolBalance; using UncheckedMemory for bytes32[]; using UncheckedMemory for Token[]; address immutable selfAddr; constructor( IVault vault_, address selfAddr_, address factory ) Satellite(vault_, factory) { selfAddr = selfAddr_; } /** * pool balance is stored as two uint128; poolBalance and gaugeBalance. */ function _getPoolBalance(Token token) internal view returns (uint256) { return vault.getPoolBalance(selfAddr, token); } function _getGaugeBalance(Token token) internal view returns (uint256) { return vault.getGaugeBalance(selfAddr, token); } function _getPoolBalances( Token[] memory tokens ) internal view returns (uint256[] memory ret2) { uint256[] memory ret = new uint256[](tokens.length); for (uint256 i = 0; i < tokens.length; ++i) { ret[i] = vault.getPoolBalance(selfAddr, tokens[i]); } } function poolParams() external view virtual override returns (bytes memory) { return ""; } }
contracts/interfaces/ISwap.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "./IPool.sol"; interface ISwap is IPool { /** * @param user the user that requested swap * @param tokens sorted, unique list of tokens that user asked to swap * @param amounts same order as tokens, requested change of token balance, positive when pool receives, negative when pool gives. type(int128).max for unknown values, for which the pool should decide. * @param data auxillary data for pool-specific uses. * @return deltaGauge same order as tokens, the desired change of gauge balance * @return deltaPool same order as bribeTokens, the desired change of pool balance */ function velocore__execute(address user, Token[] calldata tokens, int128[] memory amounts, bytes calldata data) external returns (int128[] memory, int128[] memory); function swapType() external view returns (string memory); function listedTokens() external view returns (Token[] memory); function lpTokens() external view returns (Token[] memory); function underlyingTokens(Token lp) external view returns (Token[] memory); //function spotPrice(Token token, Token base) external view returns (uint256); }
lib/prb-math/src/sd1x18/Casting.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
lib/prb-math/src/ud60x18/Casting.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
lib/prb-math/src/sd59x18/ValueType.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
lib/prb-math/src/ud60x18/Helpers.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
lib/openzeppelin-contracts/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
lib/openzeppelin-contracts/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
lib/prb-math/src/sd59x18/Casting.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
lib/openzeppelin-contracts/contracts/utils/structs/BitMaps.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/BitMaps.sol) pragma solidity ^0.8.0; /** * @dev Library for managing uint256 to bool mapping in a compact and efficient way, providing the keys are sequential. * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor]. */ library BitMaps { struct BitMap { mapping(uint256 => uint256) _data; } /** * @dev Returns whether the bit at `index` is set. */ function get(BitMap storage bitmap, uint256 index) internal view returns (bool) { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); return bitmap._data[bucket] & mask != 0; } /** * @dev Sets the bit at `index` to the boolean `value`. */ function setTo(BitMap storage bitmap, uint256 index, bool value) internal { if (value) { set(bitmap, index); } else { unset(bitmap, index); } } /** * @dev Sets the bit at `index`. */ function set(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] |= mask; } /** * @dev Unsets the bit at `index`. */ function unset(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] &= ~mask; } }
contracts/lib/Token.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; import "openzeppelin/token/ERC20/utils/SafeERC20.sol"; import "openzeppelin/token/ERC1155/IERC1155.sol"; import "openzeppelin/token/ERC1155/extensions/ERC1155Supply.sol"; import "openzeppelin/token/ERC20/extensions/IERC20Metadata.sol"; import "openzeppelin/token/ERC721/extensions/IERC721Metadata.sol"; // a library for abstracting tokens // provides a common interface for ERC20, ERC1155, and ERC721 tokens. bytes32 constant TOKEN_MASK = 0x000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; bytes32 constant ID_MASK = 0x00FFFFFFFFFFFFFFFFFFFFFF0000000000000000000000000000000000000000; uint256 constant ID_SHIFT = 160; bytes32 constant TOKENSPEC_MASK = 0xFF00000000000000000000000000000000000000000000000000000000000000; string constant NATIVE_TOKEN_SYMBOL = "ETH"; type Token is bytes32; type TokenSpecType is bytes32; using {TokenSpec_equals as ==} for TokenSpecType global; using {Token_equals as ==} for Token global; using {Token_lt as <} for Token global; using {Token_lte as <=} for Token global; using {Token_ne as !=} for Token global; Token constant NATIVE_TOKEN = Token.wrap(bytes32(0xEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE) & TOKEN_MASK); function TokenSpec_equals(TokenSpecType a, TokenSpecType b) pure returns (bool) { return TokenSpecType.unwrap(a) == TokenSpecType.unwrap(b); } function Token_equals(Token a, Token b) pure returns (bool) { return Token.unwrap(a) == Token.unwrap(b); } function Token_ne(Token a, Token b) pure returns (bool) { return Token.unwrap(a) != Token.unwrap(b); } function Token_lt(Token a, Token b) pure returns (bool) { return Token.unwrap(a) < Token.unwrap(b); } function Token_lte(Token a, Token b) pure returns (bool) { return Token.unwrap(a) <= Token.unwrap(b); } library TokenSpec { TokenSpecType constant ERC20 = TokenSpecType.wrap(0x0000000000000000000000000000000000000000000000000000000000000000); TokenSpecType constant ERC721 = TokenSpecType.wrap(0x0100000000000000000000000000000000000000000000000000000000000000); TokenSpecType constant ERC1155 = TokenSpecType.wrap(0x0200000000000000000000000000000000000000000000000000000000000000); } function toToken(IERC20 tok) pure returns (Token) { return Token.wrap(bytes32(uint256(uint160(address(tok))))); } function toToken(TokenSpecType spec_, uint88 id_, address addr_) pure returns (Token) { return Token.wrap( TokenSpecType.unwrap(spec_) | bytes32((bytes32(uint256(id_)) << ID_SHIFT) & ID_MASK) | bytes32(uint256(uint160(addr_))) ); } library TokenLib { using TokenLib for Token; using TokenLib for bytes32; using SafeERC20 for IERC20; using SafeERC20 for IERC20Metadata; function wrap(bytes32 data) internal pure returns (Token) { return Token.wrap(data); } function unwrap(Token tok) internal pure returns (bytes32) { return Token.unwrap(tok); } function addr(Token tok) internal pure returns (address) { return address(uint160(uint256(tok.unwrap() & TOKEN_MASK))); } function id(Token tok) internal pure returns (uint256) { return uint256((tok.unwrap() & ID_MASK) >> ID_SHIFT); } function spec(Token tok) internal pure returns (TokenSpecType) { return TokenSpecType.wrap(tok.unwrap() & TOKENSPEC_MASK); } function toIERC20(Token tok) internal pure returns (IERC20Metadata) { return IERC20Metadata(tok.addr()); } function toIERC1155(Token tok) internal pure returns (IERC1155) { return IERC1155(tok.addr()); } function toIERC721(Token tok) internal pure returns (IERC721Metadata) { return IERC721Metadata(tok.addr()); } function balanceOf(Token tok, address user) internal view returns (uint256) { if (tok == NATIVE_TOKEN) { return user.balance; } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return tok.toIERC20().balanceOf(user); // ERC721 balanceOf() has the same signature } else if (tok.spec() == TokenSpec.ERC1155) { return tok.toIERC1155().balanceOf(user, tok.id()); } else if (tok.spec() == TokenSpec.ERC721) { return tok.toIERC721().ownerOf(tok.id()) == user ? 1 : 0; } revert("invalid token"); } function totalSupply(Token tok) internal view returns (uint256) { require(tok != NATIVE_TOKEN); if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return tok.toIERC20().totalSupply(); // ERC721 balanceOf() has the same signature } else if (tok.spec() == TokenSpec.ERC1155) { return ERC1155Supply(tok.addr()).totalSupply(tok.id()); } else if (tok.spec() == TokenSpec.ERC721) { return 1; } revert("invalid token"); } function symbol(Token tok) internal view returns (string memory) { if (tok == NATIVE_TOKEN) { return NATIVE_TOKEN_SYMBOL; } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return tok.toIERC20().symbol(); // ERC721 balanceOf() has the same signature } else if (tok.spec() == TokenSpec.ERC1155) { return ""; } else if (tok.spec() == TokenSpec.ERC721) { return tok.toIERC721().symbol(); } } function decimals(Token tok) internal view returns (uint8) { if (tok == NATIVE_TOKEN) { return 18; } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); return IERC20Metadata(tok.addr()).decimals(); } return 0; } function transferFrom(Token tok, address from, address to, uint256 amount) internal { if (tok == NATIVE_TOKEN) { require(from == address(this), "native token transferFrom is not supported"); assembly { let success := call(gas(), to, amount, 0, 0, 0, 0) if iszero(success) { revert(0, 0) } } } else if (tok.spec() == TokenSpec.ERC20) { require(tok.id() == 0); if (from == address(this)) { tok.toIERC20().safeTransfer(to, amount); } else { tok.toIERC20().safeTransferFrom(from, to, amount); } } else if (tok.spec() == TokenSpec.ERC721) { require(amount == 1, "invalid amount"); tok.toIERC721().safeTransferFrom(from, to, tok.id()); } else if (tok.spec() == TokenSpec.ERC1155) { tok.toIERC1155().safeTransferFrom(from, to, tok.id(), amount, ""); } else { revert("invalid token"); } } function meteredTransferFrom(Token tok, address from, address to, uint256 amount) internal returns (uint256) { uint256 balBefore = tok.balanceOf(to); tok.transferFrom(from, to, amount); return tok.balanceOf(to) - balBefore; } function safeTransferFrom(Token tok, address from, address to, uint256 amount) internal { require(tok.meteredTransferFrom(from, to, amount) >= amount); } function toScaledBalance(Token tok, uint256 amount) internal view returns (uint256) { return amount; } function fromScaledBalance(Token tok, uint256 amount) internal view returns (uint256) { return amount; } function toScaledBalance(Token tok, int128 amount) internal view returns (int128) { return amount; } function fromScaledBalance(Token tok, int128 amount) internal view returns (int128) { return amount; } }
contracts/lib/RPow.sol
// SPDX-License-Identifier: AUNLICENSED // From MakerDAO DSS // Copyright (C) 2018 Rain <rainbreak@riseup.net> // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. pragma solidity ^0.8.0; function rpow(uint256 x, uint256 n, uint256 base) pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { z := base } default { z := 0 } } default { switch mod(n, 2) case 0 { z := base } default { z := x } let half := div(base, 2) // for rounding. for { n := div(n, 2) } n { n := div(n, 2) } { let xx := mul(x, x) if iszero(eq(div(xx, x), x)) { revert(0, 0) } let xxRound := add(xx, half) if lt(xxRound, xx) { revert(0, 0) } x := div(xxRound, base) if mod(n, 2) { let zx := mul(z, x) if and(iszero(iszero(x)), iszero(eq(div(zx, x), z))) { revert(0, 0) } let zxRound := add(zx, half) if lt(zxRound, zx) { revert(0, 0) } z := div(zxRound, base) } } } } }
lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
contracts/interfaces/IVault.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/interfaces/IAuthorizer.sol"; import "contracts/interfaces/IFacet.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/interfaces/IConverter.sol"; import "contracts/interfaces/IBribe.sol"; import "contracts/interfaces/ISwap.sol"; import "contracts/lib/Token.sol"; bytes32 constant SSLOT_HYPERCORE_TREASURY = bytes32( uint256(keccak256("hypercore.treasury")) - 1 ); bytes32 constant SSLOT_HYPERCORE_AUTHORIZER = bytes32( uint256(keccak256("hypercore.authorizer")) - 1 ); bytes32 constant SSLOT_HYPERCORE_ROUTINGTABLE = bytes32( uint256(keccak256("hypercore.routingTable")) - 1 ); bytes32 constant SSLOT_HYPERCORE_POOLBALANCES = bytes32( uint256(keccak256("hypercore.poolBalances")) - 1 ); bytes32 constant SSLOT_HYPERCORE_REBASEORACLES = bytes32( uint256(keccak256("hypercore.rebaseOracles")) - 1 ); bytes32 constant SSLOT_HYPERCORE_LASTBALANCES = bytes32( uint256(keccak256("hypercore.lastBalances")) - 1 ); bytes32 constant SSLOT_HYPERCORE_USERBALANCES = bytes32( uint256(keccak256("hypercore.userBalances")) - 1 ); bytes32 constant SSLOT_HYPERCORE_EMISSIONINFORMATION = bytes32( uint256(keccak256("hypercore.emissionInformation")) - 1 ); bytes32 constant SSLOT_REENTRACNYGUARD_LOCKED = bytes32( uint256(keccak256("ReentrancyGuard.locked")) - 1 ); bytes32 constant SSLOT_PAUSABLE_PAUSED = bytes32( uint256(keccak256("Pausable.paused")) - 1 ); bytes32 constant SSLOT_PAUSED_POOLS = bytes32( uint256(keccak256("hypercore.pausedPools")) - 1 ); struct VelocoreOperation { bytes32 poolId; bytes32[] tokenInformations; bytes data; } struct route { address from; address to; bool stable; } interface IVault { struct Facet { address facetAddress; bytes4[] functionSelectors; } enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); event Swap( ISwap indexed pool, address indexed user, Token[] tokenRef, int128[] delta ); event Gauge( IGauge indexed pool, address indexed user, Token[] tokenRef, int128[] delta ); event Convert( IConverter indexed pool, address indexed user, Token[] tokenRef, int128[] delta ); event Vote(IGauge indexed pool, address indexed user, int256 voteDelta); event UserBalance( address indexed to, address indexed from, Token[] tokenRef, int128[] delta ); event BribeAttached(IGauge indexed gauge, IBribe indexed bribe); event BribeKilled(IGauge indexed gauge, IBribe indexed bribe); event GaugeKilled(IGauge indexed gauge, bool killed); function notifyInitialSupply(Token, uint128, uint128) external; function attachBribe(IGauge gauge, IBribe bribe) external; function killBribe(IGauge gauge, IBribe bribe) external; function killGauge(IGauge gauge, bool t) external; function ballotToken() external returns (Token); function emissionToken() external returns (Token); function execute( Token[] calldata tokenRef, int128[] memory deposit, VelocoreOperation[] calldata ops ) external payable; function facets() external view returns (Facet[] memory facets_); function facetFunctionSelectors( address _facet ) external view returns (bytes4[] memory facetFunctionSelectors_); function facetAddresses() external view returns (address[] memory facetAddresses_); function facetAddress( bytes4 _functionSelector ) external view returns (address facetAddress_); function query( address user, Token[] calldata tokenRef, int128[] memory deposit, VelocoreOperation[] calldata ops ) external returns (int128[] memory); function admin_setFunctions( address implementation, bytes4[] calldata sigs ) external; function admin_addFacet(IFacet implementation) external; function admin_setAuthorizer(IAuthorizer auth_) external; function admin_pause(bool t) external; function admin_setTreasury(address treasury) external; function emissionStarted() external view returns (bool); function swapExactTokensForTokens( uint256 amountIn, uint256 amountOutMin, route[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapTokensForExactTokens( uint256 amountOut, uint256 amountInMax, route[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactETHForTokens( uint256 amountOutMin, route[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); function swapTokensForExactETH( uint256 amountOut, uint256 amountInMax, route[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapExactTokensForETH( uint256 amountIn, uint256 amountOutMin, route[] calldata path, address to, uint256 deadline ) external returns (uint256[] memory amounts); function swapETHForExactTokens( uint256 amountOut, route[] calldata path, address to, uint256 deadline ) external payable returns (uint256[] memory amounts); function getAmountsOut( uint256 amountIn, route[] calldata path ) external returns (uint256[] memory amounts); function getAmountsIn( uint256 amountOut, route[] calldata path ) external returns (uint256[] memory amounts); function execute1( address pool, uint8 method, address t1, uint8 m1, int128 a1, bytes memory data ) external payable returns (int128[] memory); function query1( address pool, uint8 method, address t1, uint8 m1, int128 a1, bytes memory data ) external returns (int128[] memory); function execute2( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, bytes memory data ) external payable returns (int128[] memory); function query2( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, bytes memory data ) external returns (int128[] memory); function execute3( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, address t3, uint8 m3, int128 a3, bytes memory data ) external payable returns (int128[] memory); function query3( address pool, uint8 method, address t1, uint8 m1, int128 a1, address t2, uint8 m2, int128 a2, address t3, uint8 m3, int128 a3, bytes memory data ) external returns (int128[] memory); function getPair(address t0, address t1) external view returns (address); function allPairs(uint256 i) external view returns (address); function allPairsLength() external view returns (uint256); function getPoolBalance(address, Token) external view returns (uint256); function getGaugeBalance(address, Token) external view returns (uint256); function claimGasses(address[] memory, address) external; function removeLiquidityETH( address token, bool stable, uint256 liquidity, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external returns (uint256 amountToken, uint256 amountETH); function quoteRemoveLiquidity( address tokenA, address tokenB, bool stable, uint256 liquidity ) external returns (uint256 amountA, uint256 amountB); function addLiquidityETH( address tokenA, bool stable, uint256 amountADesired, uint256 amountAMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountA, uint256 amountETH, uint256 liquidity); function addLiquidity( address tokenA, address tokenB, bool stable, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external payable returns (uint256 amountA, uint256 amountB, uint256 liquidity); function quoteAddLiquidity( address tokenA, address tokenB, bool stable, uint256 amountADesired, uint256 amountBDesired ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity); function removeLiquidity( address tokenA, address tokenB, bool stable, uint256 liquidity, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB); function deposit(address pool, uint256 amount) external; function withdraw(address pool, uint256 amount) external; }
lib/prb-math/src/sd1x18/Errors.sol
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
contracts/VaultStorage.sol
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity ^0.8.19; import "contracts/lib/Token.sol"; import "contracts/interfaces/IVault.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/lib/PoolBalanceLib.sol"; import "contracts/interfaces/IGauge.sol"; import "contracts/interfaces/IBribe.sol"; import "contracts/interfaces/IAuthorizer.sol"; import "openzeppelin/utils/structs/BitMaps.sol"; import "openzeppelin/utils/StorageSlot.sol"; import "openzeppelin/utils/structs/EnumerableSet.sol"; // A base contract inherited by every facet. // Vault stores everything on named slots, in order to: // - prevent storage collision // - make information access cheaper. (see Diamond.yul) // The downside of doing that is that storage access becomes exteremely verbose; // We define large singleton structs to mitigate that. struct EmissionInformation { // a singleton struct for emission-related global data // accessed as `_e()` uint128 perVote; // (number of VC tokens ever emitted, per vote) * 1e9; monotonically increasing. uint128 totalVotes; // the current sum of votes on all pool mapping(IGauge => GaugeInformation) gauges; // per-guage informations uint32 timestamp1; } struct GaugeInformation { // we use `lastBribeUpdate == 1` as a special value indicating a killed gauge // note that this is updated with bribe calculation, not emission calculation, unlike perVoteAtLastEmissionUpdate uint32 lastBribeUpdate; uint112 perVoteAtLastEmissionUpdate; // // total vote on this gauge uint112 totalVotes; // mapping(address => uint256) userVotes; // // bribes are contracts; we call them to extort bribes on demand EnumerableSet.AddressSet bribes; // // for storing extorted bribes. // we track (accumulated reward / vote), per bribe contract, per token // we separately track rewards from different bribes, to contain bad-behaving bribe contracts mapping(IBribe => mapping(Token => Rewards)) rewards; } // tracks the distribution of a single token struct Rewards { // accumulated rewards per vote * 1e9 uint256 current; // `accumulated rewards per vote * 1e9` at the moment of last claim of the user mapping(address => uint256) snapshots; uint256 balance; bool old; } struct RoutingTable { EnumerableSet.Bytes32Set sigs; mapping(address => EnumerableSet.Bytes32Set) sigsByImplementation; } contract VaultStorage { using EnumerableSet for EnumerableSet.Bytes32Set; event Swap(ISwap indexed pool, address indexed user, Token[] tokenRef, int128[] delta); event Gauge(IGauge indexed pool, address indexed user, Token[] tokenRef, int128[] delta); event Convert(IConverter indexed pool, address indexed user, Token[] tokenRef, int128[] delta); event Vote(IGauge indexed pool, address indexed user, int256 voteDelta); event UserBalance(address indexed to, address indexed from, Token[] tokenRef, int128[] delta); event BribeAttached(IGauge indexed gauge, IBribe indexed bribe); event BribeKilled(IGauge indexed gauge, IBribe indexed bribe); event GaugeKilled(IGauge indexed gauge, bool killed); enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); function _getImplementation(bytes4 sig) internal view returns (address impl, bool readonly) { assembly ("memory-safe") { impl := sload(not(shr(0xe0, sig))) if iszero(lt(impl, 0x10000000000000000000000000000000000000000)) { readonly := 1 impl := not(impl) } } } function _setFunction(bytes4 sig, address implementation) internal { (address oldImplementation,) = _getImplementation(sig); FacetCut[] memory a = new FacetCut[](1); a[0].facetAddress = implementation; a[0].action = FacetCutAction.Add; a[0].functionSelectors = new bytes4[](1); a[0].functionSelectors[0] = sig; if (oldImplementation != address(0)) { a[0].action = FacetCutAction.Replace; } if (implementation == address(0)) a[0].action = FacetCutAction.Remove; emit DiamondCut(a, implementation, ""); assembly ("memory-safe") { sstore(not(shr(0xe0, sig)), implementation) } if (oldImplementation != address(0)) { _routingTable().sigsByImplementation[oldImplementation].remove(sig); } if (implementation == address(0)) { _routingTable().sigs.remove(sig); } else { _routingTable().sigs.add(sig); _routingTable().sigsByImplementation[implementation].add(sig); } } // viewer implementations are stored as `not(implementation)`. please refer to Diamond.yul for more information function _setViewer(bytes4 sig, address implementation) internal { (address oldImplementation,) = _getImplementation(sig); FacetCut[] memory a = new FacetCut[](1); a[0].facetAddress = implementation; a[0].action = FacetCutAction.Add; a[0].functionSelectors = new bytes4[](1); a[0].functionSelectors[0] = sig; if (oldImplementation != address(0)) { a[0].action = FacetCutAction.Replace; } if (implementation == address(0)) a[0].action = FacetCutAction.Remove; emit DiamondCut(a, implementation, ""); assembly ("memory-safe") { sstore(not(shr(0xe0, sig)), not(implementation)) } if (oldImplementation != address(0)) { _routingTable().sigsByImplementation[oldImplementation].remove(sig); } if (implementation == address(0)) { _routingTable().sigs.remove(sig); } else { _routingTable().sigs.add(sig); _routingTable().sigsByImplementation[implementation].add(sig); } } function _routingTable() internal pure returns (RoutingTable storage ret) { bytes32 slot = SSLOT_HYPERCORE_ROUTINGTABLE; assembly ("memory-safe") { ret.slot := slot } } // each pool has two accounts of balance: gauge balance and pool balance; both are uint128. // they are stored in a wrapped bytes32, PoolBalance // the only difference between them is that new emissions are credited into the gauge balance. // the pool can use them in any way they want. function _poolBalances() internal pure returns (mapping(IPool => mapping(Token => PoolBalance)) storage ret) { bytes32 slot = SSLOT_HYPERCORE_POOLBALANCES; assembly ("memory-safe") { ret.slot := slot } } function _e() internal pure returns (EmissionInformation storage ret) { bytes32 slot = SSLOT_HYPERCORE_EMISSIONINFORMATION; assembly ("memory-safe") { ret.slot := slot } } // users can also store tokens directly in the vault; their balances are tracked separately. function _userBalances() internal pure returns (mapping(address => mapping(Token => uint256)) storage ret) { bytes32 slot = SSLOT_HYPERCORE_USERBALANCES; assembly ("memory-safe") { ret.slot := slot } } function _pausedPools() internal pure returns (mapping(address => bool) storage ret) { bytes32 slot = SSLOT_PAUSED_POOLS; assembly ("memory-safe") { ret.slot := slot } } modifier nonReentrant() { require(StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value < 2, "REENTRANCY"); StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value = 2; _; StorageSlot.getUint256Slot(SSLOT_REENTRACNYGUARD_LOCKED).value = 1; } modifier whenNotPaused() { require(StorageSlot.getUint256Slot(SSLOT_PAUSABLE_PAUSED).value == 0, "PAUSED"); _; } // this contract delegates access control to another contract, IAuthenticator. // this design was inspired by Balancer. // actionId is a function of method signature and contract address modifier authenticate() { authenticateCaller(); _; } function authenticateCaller() internal { bytes32 actionId = keccak256(abi.encodePacked(bytes32(uint256(uint160(address(this)))), msg.sig)); require( IAuthorizer(StorageSlot.getAddressSlot(SSLOT_HYPERCORE_AUTHORIZER).value).canPerform( actionId, msg.sender, address(this) ), "unauthorized" ); } }
lib/openzeppelin-contracts/contracts/utils/Address.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
contracts/pools/xyk/XYKPool.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.19; import "openzeppelin/utils/math/Math.sol"; import "openzeppelin/utils/math/SignedMath.sol"; import "openzeppelin/utils/math/SafeCast.sol"; import {ud60x18, intoUint256, exp2, log2, convert, pow} from "@prb/math/src/UD60x18.sol"; import "contracts/lib/Token.sol"; import "contracts/lib/UncheckedMemory.sol"; import "contracts/lib/PoolBalanceLib.sol"; import {rpow} from "contracts/lib/RPow.sol"; import "contracts/pools/SingleTokenGauge.sol"; /** * @dev a pool with weighted geometric average as its invariant, aka Balancer weighted pool. * Please refer to the url below for detailed mathematical explanation. * https://velocore.gitbook.io/velocore-v2/technical-docs/pool-specifics/generalized-cpmm * * There is two implementation of the same mathematical function. one in this contract, and another in ConstantProductLibrary. * they were separated to make compiled bytecode less than 24kb. * * one implementation uses integer division; they are cheap and accurate, but prone to overflows, especially when weights are high. * one implementation uses addition and substraction over logarithm; they are expensive and inaccurate, but can handle far more ranges. * * this contract is the first one. it falls back to the second one (ConstantProductLibrary) when neccesary. * */ contract XYKPool is SingleTokenGauge, PoolWithLPToken, ISwap, IBribe { using UncheckedMemory for uint256[]; using UncheckedMemory for int128[]; using UncheckedMemory for Token[]; using SafeCast for int256; using SafeCast for uint256; using TokenLib for Token; event FeeChanged(uint256 fee1e18); event DecayChanged(uint256 decay); address immutable WETH_ADDRESS; Token immutable token0_; Token immutable token1_; uint256 internal immutable _3token_i_0; uint256 internal immutable _3token_i_1; uint256 internal immutable _3token_i_lp; uint32 public decayRate; uint32 public fee1e9; uint32 lastTradeTimestamp; uint128 constant feeMultiplier = 1e9; uint8 internal immutable _lpDecimals; int256 public index; int256 lastIndex; int256 logYieldEMA; function token0() external view returns (address) { if (token0_ == NATIVE_TOKEN) return WETH_ADDRESS; else return token0_.addr(); } function token1() external view returns (address) { if (token1_ == NATIVE_TOKEN) return WETH_ADDRESS; else return token1_.addr(); } function getLogYieldEMA() external view returns (int256) { int256 indexNew = ((_invariant() * 1e18) / (totalSupply() + 2)).toInt256(); if (lastTradeTimestamp != block.timestamp) { int256 an = int256(rpow(0.999983955055097432543272791e27, block.timestamp - lastTradeTimestamp, 1e27)); int256 logYield = ( int256(intoUint256(log2(ud60x18(uint256(indexNew * 1e27))))) - int256(intoUint256(log2(ud60x18(uint256(lastIndex * 1e27))))) ) / int256(block.timestamp - lastTradeTimestamp); return (logYieldEMA * an + (1e27 - an) * logYield) / 1e27; } return logYieldEMA; } function floorDiv(int256 a, int256 b) internal pure returns (int256) { uint256 a_ = SignedMath.abs(a); uint256 b_ = SignedMath.abs(b); if ((a > 0) == (b > 0)) { return SafeCast.toInt256(a_ / b_); } else { return -SafeCast.toInt256(Math.ceilDiv(a_, b_)); } } function ceilDiv(int256 a, int256 b) internal pure returns (int256) { uint256 a_ = SignedMath.abs(a); uint256 b_ = SignedMath.abs(b); if ((a > 0) == (b > 0)) { return SafeCast.toInt256(Math.ceilDiv(a_, b_)); } else { return -SafeCast.toInt256(a_ / b_); } } function setDecay(uint256 decayRate_) external authenticate { decayRate = uint32(decayRate_); emit DecayChanged(decayRate); } function setFee(uint256 fee1e9_, uint256 decayRate_) external authenticate { require(fee1e9 <= 0.1e9); fee1e9 = uint32(fee1e9_); emit FeeChanged(fee1e9 * uint256(1e8)); } constructor( IVault vault_, string memory _name, string memory _symbol, Token t0, Token t1, uint32 fee1e9_, uint32 decay, address weth ) SingleTokenGauge(vault_, toToken(this), this) { WETH_ADDRESS = weth; decayRate = decay; fee1e9 = fee1e9_; index = 1e18; lastIndex = 1e18; PoolWithLPToken._initialize(_name, _symbol); emit FeeChanged(fee1e9 * uint256(1e8)); emit DecayChanged(decayRate); token0_ = t0; token1_ = t1; uint256 ilp; uint256 i0; uint256 i1; if (toToken(this) < t0) { ilp = 0; i0 = 1; i1 = 2; } else if (toToken(this) < t1) { ilp = 1; i0 = 0; i1 = 2; } else { ilp = 2; i0 = 0; i1 = 1; } _3token_i_0 = i0; _3token_i_1 = i1; _3token_i_lp = ilp; _lpDecimals = (t0.decimals() + t1.decimals()) / 2; } // positive amount => pool receives, user gives // negative amount => user receives, pool gives // type(int256).max => to be computed event Sync(uint112 reserve0, uint112 reserve1); function velocore__execute(address user, Token[] calldata t, int128[] memory r, bytes calldata) external onlyVault returns (int128[] memory deltaGauge, int128[] memory deltaPool) { deltaGauge = new int128[](t.length); deltaPool = new int128[](t.length); (int256 a_0, int256 a_1,) = getReserves(); emit Sync(uint112(uint256(a_0)), uint112(uint256(a_1))); a_0 += 1; a_1 += 1; if (!vault.emissionStarted()) { int256 indexNew = ((_invariant() * 1e18) / (totalSupply() + 1)).toInt256(); if (lastTradeTimestamp != block.timestamp && lastIndex != indexNew) { int256 an = int256(rpow(0.999983955055097432543272791e27, block.timestamp - lastTradeTimestamp, 1e27)); int256 logYield = ( int256(intoUint256(log2(ud60x18(uint256(indexNew * 1e27))))) - int256(intoUint256(log2(ud60x18(uint256(lastIndex * 1e27))))) ) / int256(block.timestamp - lastTradeTimestamp); logYieldEMA = (logYieldEMA * an + (1e27 - an) * logYield) / 1e27; lastIndex = indexNew; lastTradeTimestamp = uint32(block.timestamp); } index = indexNew; } if (t.length == 3) { require(t.u(_3token_i_lp) == toToken(this) && t.u(_3token_i_0) == token0_ && t.u(_3token_i_1) == token1_); int256 r_lp = r.u(_3token_i_lp); int256 r_0 = r.u(_3token_i_0); int256 r_1 = r.u(_3token_i_1); if (r_lp != type(int128).max) { if (r_0 != type(int128).max) { r_1 = _exchange_for_t1( a_0, a_1, r_0, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } else if (r_1 != type(int128).max) { r_0 = _exchange_for_t0( a_0, a_1, r_1, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } else { (r_0, r_1) = _exchange_from_lp(a_0, a_1, floorDiv(r_lp * index, 1e18)); } } else { require(r_0 != type(int128).max || r_1 != type(int128).max); if (r_0 == type(int128).max) { r_0 = (r_1 * (a_0)) / (a_1); } else if (r_1 == type(int128).max) { r_1 = (r_0 * (a_1)) / (a_0); } r_lp = ceilDiv(_exchange_for_lp(a_0, a_1, r_0, r_1, int256(uint256(fee1e9 * feeMultiplier))) * 1e18, index); } deltaPool.u(_3token_i_0, r_0.toInt128()); deltaPool.u(_3token_i_1, r_1.toInt128()); deltaPool.u(_3token_i_lp, r_lp.toInt128()); _handleSwap(user, r_lp, r_0, r_1); return (deltaGauge, deltaPool); } else if (t.length == 2) { require((r.u(0) == type(int128).max) != (r.u(1) == type(int128).max)); uint256 i_lp = 2; uint256 i_0 = 2; uint256 i_1 = 2; Token tt = t.u(0); if (tt == toToken(this)) i_lp = 0; else if (tt == token0_) i_0 = 0; else if (tt == token1_) i_1 = 0; else revert("unsupported token"); tt = t.u(1); if (tt == toToken(this)) i_lp = 1; else if (tt == token0_) i_0 = 1; else if (tt == token1_) i_1 = 1; else revert("unsupported token"); int256 r_lp = i_lp == 2 ? int256(0) : r.u(i_lp); int256 r_0 = i_0 == 2 ? int256(0) : r.u(i_0); int256 r_1 = i_1 == 2 ? int256(0) : r.u(i_1); if (r_lp == type(int128).max) { r_lp = ceilDiv(_exchange_for_lp(a_0, a_1, r_0, r_1, int256(uint256(fee1e9 * feeMultiplier))) * 1e18, index); } else if (r_1 == type(int128).max) { r_1 = _exchange_for_t1( a_0, a_1, r_0, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } else { r_0 = _exchange_for_t0( a_0, a_1, r_1, floorDiv(r_lp * index, 1e18), int256(uint256(fee1e9 * feeMultiplier)) ); } if (i_lp != 2) { deltaPool.u(i_lp, r_lp.toInt128()); } else { require(r_lp == 0); } if (i_0 != 2) { deltaPool.u(i_0, r_0.toInt128()); } else { require(r_0 == 0); } if (i_1 != 2) { deltaPool.u(i_1, r_1.toInt128()); } else { require(r_1 == 0); } _handleSwap(user, r_lp, r_0, r_1); return (deltaGauge, deltaPool); } else { revert("unsupported operation"); } } function getReserves() public view returns (int256, int256, uint256) { return (_getPoolBalance(token0_).toInt256(), _getPoolBalance(token1_).toInt256(), block.timestamp); } function _exchange(int256 a_0, int256 a_1, int256 b_1, int256 d_k, int256 fee) internal returns (int256) { int256 a_k = Math.sqrt((a_0.toUint256()) * (a_1.toUint256()), Math.Rounding.Up).toInt256(); int256 b_k = a_k - d_k; require(b_k > 0); if (a_k <= b_k) { b_1 -= (SignedMath.max(((a_k * b_1) / b_k) - a_1, 0) * fee) / 1e18; } else if (a_k >= b_k) { b_1 -= (SignedMath.max(b_1 - ((b_k * a_1) / a_k), 0) * fee) / 1e18; } int256 b_0 = ceilDiv(b_k ** 2, b_1); if (a_k <= b_k) { b_0 += (SignedMath.max(((a_k * b_0) / b_k) - a_0, 0) * fee) / (1e18 - fee); } else if (a_k > b_k) { b_0 += (SignedMath.max(b_0 - ((b_k * a_0) / a_k), 0) * fee) / (1e18 - fee); } return b_0 - a_0; } function _exchange_for_t0(int256 a_0, int256 a_1, int256 r_1, int256 r_lp, int256 fee) internal returns (int256) { return _exchange(a_0, a_1, a_1 + r_1, r_lp, fee); } function _exchange_for_t1(int256 a_0, int256 a_1, int256 r_0, int256 r_lp, int256 fee) internal returns (int256) { return _exchange(a_1, a_0, a_0 + r_0, r_lp, fee); } function _exchange_for_lp(int256 a_0, int256 a_1, int256 r_0, int256 r_1, int256 fee) internal returns (int256) { int256 b_0 = a_0 + r_0; int256 b_1 = a_1 + r_1; int256 a_k = Math.sqrt((a_0 * a_1).toUint256(), Math.Rounding.Up).toInt256(); int256 b_k = invariant(b_0, b_1); if (a_k <= b_k) { b_0 -= (SignedMath.max(((a_k * b_0) / b_k) - a_0, 0) * fee) / 1e18; b_1 -= (SignedMath.max(((a_k * b_1) / b_k) - a_1, 0) * fee) / 1e18; } else if (a_k > b_k) { b_0 -= (SignedMath.max(b_0 - ((b_k * a_0) / a_k), 0) * fee) / 1e18; b_1 -= (SignedMath.max(b_1 - ((b_k * a_1) / a_k), 0) * fee) / 1e18; } return a_k - invariant(b_0, b_1); } function _exchange_from_lp(int256 a_0, int256 a_1, int256 r_lp) internal returns (int256, int256) { Math.Rounding r = r_lp > 0 ? Math.Rounding.Up : Math.Rounding.Down; int256 inv = Math.sqrt((a_0.toUint256()) * (a_1.toUint256()), r).toInt256(); return (ceilDiv(-((a_0) * r_lp), inv), ceilDiv(-((a_1) * r_lp), inv)); } event Mint(address indexed sender, uint256 amount0, uint256 amount1); event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to); event Swap( address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to ); function _handleSwap(address user, int256 rlp, int256 r0, int256 r1) internal { if (rlp > 0) { emit Burn(user, uint256(-int256(r0)), uint256(-int256(r1)), user); _simulateBurn(uint256(int256(rlp))); uint256 inv = _invariant(); uint256 d = (inv - uint256(int256(rlp))); } else if (rlp < 0) { emit Mint(user, uint256(int256(r0)), uint256(int256(r1))); _simulateMint(uint256(-int256(rlp))); } else { uint256 a0i; uint256 a1i; uint256 a0o; uint256 a1o; if (r0 > 0) { a0i = uint256(int256(r0)); } else { a0o = uint256(int256(-r0)); } if (r1 > 0) { a1i = uint256(int256(r1)); } else { a1o = uint256(int256(-r1)); } emit Swap(user, a0i, a1i, a0o, a1o, user); } } function poolBalances() public view returns (uint256[] memory) { return _getPoolBalances(relevantTokens()); } function relevantTokens() public view virtual returns (Token[] memory) { Token[] memory ret = new Token[](3); unchecked { ret.u(0, toToken(this)); ret.u(1, token0_); ret.u(2, token1_); } return ret; } function invariant(int256 a, int256 b) internal pure returns (int256) { uint256 a_ = a.toUint256(); uint256 b_ = b.toUint256(); return invariant(a_, b_).toInt256(); } function invariant(uint256 a, uint256 b) internal pure returns (uint256) { return Math.sqrt(a * b); } function _invariant() internal view virtual returns (uint256) { (int256 a_0, int256 a_1,) = getReserves(); return invariant(a_0 + 1, a_1 + 1).toUint256(); } function _excessInvariant() internal view virtual returns (uint256) { uint256 minted = Math.ceilDiv((totalSupply() + 1) * index.toUint256(), 1e18); (int256 a_0, int256 a_1,) = getReserves(); uint256 actual = _invariant(); return actual < minted ? 0 : actual - minted; } function listedTokens() public view override returns (Token[] memory) { Token[] memory ret = new Token[](2); unchecked { ret.u(0, token0_); ret.u(1, token1_); } return ret; } function swapType() external view override returns (string memory) { return "cpmm"; } function lpTokens() public view override returns (Token[] memory ret) { ret = new Token[](1); ret[0] = toToken(this); } function poolParams() external view override(IPool, Pool) returns (bytes memory) { uint256[] memory r = new uint256[](2); r[0] = 1; r[1] = 1; return abi.encode(fee1e9 * uint256(1e9), r); } function decimals() external view override returns (uint8) { return _lpDecimals; } function velocore__bribe(IGauge gauge, uint256 elapsed) external onlyVault returns ( Token[] memory bribeTokens, int128[] memory deltaGauge, int128[] memory deltaPool, int128[] memory deltaExternal ) { require(address(gauge) == address(this)); // this is a bug. SwapFacet bypasses this function. bribeTokens = new Token[](1); deltaGauge = new int128[](1); deltaPool = new int128[](1); deltaExternal = new int128[](1); bribeTokens[0] = toToken(this); if (IVault(vault).emissionStarted()) { uint256 decay = 2 ** 32 - rpow(decayRate, elapsed, 2 ** 32); uint256 decayed = (((_excessInvariant() * 1e18) / uint256(index)) * decay) / 2 ** 32; deltaPool.u(0, -decayed.toInt256().toInt128()); } } function bribeTokens(IGauge gauge) external view returns (Token[] memory) { Token v = toToken(this); assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function bribeRates(IGauge gauge) external view returns (uint256[] memory) { uint256 v; unchecked { v = address(gauge) == address(this) ? (((_excessInvariant() * 1e18) / uint256(index)) * (2 ** 32 - uint256(decayRate))) / 2 ** 32 : 0; } assembly { mstore(0, 0x20) mstore(0x20, 1) mstore(0x40, v) return(0, 0x60) } } function underlyingTokens(Token tok) external view returns (Token[] memory) { require(tok == toToken(this)); return listedTokens(); } function setFeeToZero() external onlyVault { fee1e9 = 0; } }
Compiler Settings
{"viaIR":true,"remappings":["@prb/test/=lib/prb-math/lib/prb-test/src/","ds-test/=lib/solmate/lib/ds-test/src/","forge-std/=lib/forge-std/src/","openzeppelin/=lib/openzeppelin-contracts/contracts/","@openzeppelin/=lib/openzeppelin-contracts/","openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/","@prb/math/=lib/prb-math/","prb-test/=lib/prb-math/lib/prb-test/src/","solmate/=lib/solmate/src/","lzapp/=lib/solidity-examples/contracts/","algebra-core/=lib/Algebra/src/core/contracts/","algebra-plugin/=lib/Algebra/src/plugin/contracts/","algebra-periphery/=lib/Algebra/src/periphery/contracts/","algebra-farming/=lib/Algebra/src/farming/contracts/","@cryptoalgebra/integral-base-plugin/=lib/Algebra/src/plugin/","@cryptoalgebra/integral-core/=lib/Algebra/src/core/","@cryptoalgebra/integral-periphery/=lib/Algebra/src/periphery/","Algebra/=lib/Algebra/src/","erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/","openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/","openzeppelin-contracts/=lib/openzeppelin-contracts/","prb-math/=lib/prb-math/src/"],"outputSelection":{"*":{"*":["abi","evm.bytecode","evm.deployedBytecode","evm.methodIdentifiers","metadata"]}},"optimizer":{"runs":50,"enabled":true},"metadata":{"useLiteralContent":false,"bytecodeHash":"ipfs","appendCBOR":true},"libraries":{},"evmVersion":"paris"}
Contract ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"vc_","internalType":"address"},{"type":"address","name":"factory_","internalType":"contract XYKPoolFactory"}]},{"type":"event","name":"BribeAttached","inputs":[{"type":"address","name":"gauge","internalType":"contract IGauge","indexed":true},{"type":"address","name":"bribe","internalType":"contract IBribe","indexed":true}],"anonymous":false},{"type":"event","name":"BribeKilled","inputs":[{"type":"address","name":"gauge","internalType":"contract IGauge","indexed":true},{"type":"address","name":"bribe","internalType":"contract IBribe","indexed":true}],"anonymous":false},{"type":"event","name":"Convert","inputs":[{"type":"address","name":"pool","internalType":"contract IConverter","indexed":true},{"type":"address","name":"user","internalType":"address","indexed":true},{"type":"bytes32[]","name":"tokenRef","internalType":"Token[]","indexed":false},{"type":"int128[]","name":"delta","internalType":"int128[]","indexed":false}],"anonymous":false},{"type":"event","name":"DiamondCut","inputs":[{"type":"tuple[]","name":"_diamondCut","internalType":"struct VaultStorage.FacetCut[]","indexed":false,"components":[{"type":"address","name":"facetAddress","internalType":"address"},{"type":"uint8","name":"action","internalType":"enum VaultStorage.FacetCutAction"},{"type":"bytes4[]","name":"functionSelectors","internalType":"bytes4[]"}]},{"type":"address","name":"_init","internalType":"address","indexed":false},{"type":"bytes","name":"_calldata","internalType":"bytes","indexed":false}],"anonymous":false},{"type":"event","name":"Gauge","inputs":[{"type":"address","name":"pool","internalType":"contract IGauge","indexed":true},{"type":"address","name":"user","internalType":"address","indexed":true},{"type":"bytes32[]","name":"tokenRef","internalType":"Token[]","indexed":false},{"type":"int128[]","name":"delta","internalType":"int128[]","indexed":false}],"anonymous":false},{"type":"event","name":"GaugeKilled","inputs":[{"type":"address","name":"gauge","internalType":"contract IGauge","indexed":true},{"type":"bool","name":"killed","internalType":"bool","indexed":false}],"anonymous":false},{"type":"event","name":"Swap","inputs":[{"type":"address","name":"pool","internalType":"contract ISwap","indexed":true},{"type":"address","name":"user","internalType":"address","indexed":true},{"type":"bytes32[]","name":"tokenRef","internalType":"Token[]","indexed":false},{"type":"int128[]","name":"delta","internalType":"int128[]","indexed":false}],"anonymous":false},{"type":"event","name":"UserBalance","inputs":[{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"address","name":"from","internalType":"address","indexed":true},{"type":"bytes32[]","name":"tokenRef","internalType":"Token[]","indexed":false},{"type":"int128[]","name":"delta","internalType":"int128[]","indexed":false}],"anonymous":false},{"type":"event","name":"Vote","inputs":[{"type":"address","name":"pool","internalType":"contract IGauge","indexed":true},{"type":"address","name":"user","internalType":"address","indexed":true},{"type":"int256","name":"voteDelta","internalType":"int256","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"payable","outputs":[{"type":"uint256","name":"amountA","internalType":"uint256"},{"type":"uint256","name":"amountB","internalType":"uint256"},{"type":"uint256","name":"liquidity","internalType":"uint256"}],"name":"addLiquidity","inputs":[{"type":"address","name":"tokenA","internalType":"address"},{"type":"address","name":"tokenB","internalType":"address"},{"type":"bool","name":"stable","internalType":"bool"},{"type":"uint256","name":"amountADesired","internalType":"uint256"},{"type":"uint256","name":"amountBDesired","internalType":"uint256"},{"type":"uint256","name":"amountAMin","internalType":"uint256"},{"type":"uint256","name":"amountBMin","internalType":"uint256"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"deadline","internalType":"uint256"}]},{"type":"function","stateMutability":"payable","outputs":[{"type":"uint256","name":"amountA","internalType":"uint256"},{"type":"uint256","name":"amountETH","internalType":"uint256"},{"type":"uint256","name":"liquidity","internalType":"uint256"}],"name":"addLiquidityETH","inputs":[{"type":"address","name":"tokenA","internalType":"address"},{"type":"bool","name":"stable","internalType":"bool"},{"type":"uint256","name":"amountADesired","internalType":"uint256"},{"type":"uint256","name":"amountAMin","internalType":"uint256"},{"type":"uint256","name":"amountETHMin","internalType":"uint256"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"deadline","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"allPairs","inputs":[{"type":"uint256","name":"i","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"allPairsLength","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"deposit","inputs":[{"type":"address","name":"p","internalType":"address"},{"type":"uint256","name":"a","internalType":"uint256"}]},{"type":"function","stateMutability":"payable","outputs":[{"type":"int128[]","name":"","internalType":"int128[]"}],"name":"execute1","inputs":[{"type":"address","name":"pool","internalType":"contract IPool"},{"type":"uint8","name":"method","internalType":"uint8"},{"type":"address","name":"t1","internalType":"address"},{"type":"uint8","name":"m1","internalType":"uint8"},{"type":"int128","name":"a1","internalType":"int128"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"payable","outputs":[{"type":"int128[]","name":"","internalType":"int128[]"}],"name":"execute2","inputs":[{"type":"address","name":"pool","internalType":"contract IPool"},{"type":"uint8","name":"method","internalType":"uint8"},{"type":"address","name":"t1","internalType":"address"},{"type":"uint8","name":"m1","internalType":"uint8"},{"type":"int128","name":"a1","internalType":"int128"},{"type":"address","name":"t2","internalType":"address"},{"type":"uint8","name":"m2","internalType":"uint8"},{"type":"int128","name":"a2","internalType":"int128"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"payable","outputs":[{"type":"int128[]","name":"","internalType":"int128[]"}],"name":"execute3","inputs":[{"type":"address","name":"pool","internalType":"contract IPool"},{"type":"uint8","name":"method","internalType":"uint8"},{"type":"address","name":"t1","internalType":"address"},{"type":"uint8","name":"m1","internalType":"uint8"},{"type":"int128","name":"a1","internalType":"int128"},{"type":"address","name":"t2","internalType":"address"},{"type":"uint8","name":"m2","internalType":"uint8"},{"type":"int128","name":"a2","internalType":"int128"},{"type":"address","name":"t3","internalType":"address"},{"type":"uint8","name":"m3","internalType":"uint8"},{"type":"int128","name":"a3","internalType":"int128"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"contract XYKPoolFactory"}],"name":"factory","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"getPair","inputs":[{"type":"address","name":"t0","internalType":"address"},{"type":"address","name":"t1","internalType":"address"},{"type":"bool","name":"stable","internalType":"bool"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"initializeFacet","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"int128[]","name":"","internalType":"int128[]"}],"name":"query1","inputs":[{"type":"address","name":"pool","internalType":"contract IPool"},{"type":"uint8","name":"method","internalType":"uint8"},{"type":"address","name":"t1","internalType":"address"},{"type":"uint8","name":"m1","internalType":"uint8"},{"type":"int128","name":"a1","internalType":"int128"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"int128[]","name":"","internalType":"int128[]"}],"name":"query2","inputs":[{"type":"address","name":"pool","internalType":"contract IPool"},{"type":"uint8","name":"method","internalType":"uint8"},{"type":"address","name":"t1","internalType":"address"},{"type":"uint8","name":"m1","internalType":"uint8"},{"type":"int128","name":"a1","internalType":"int128"},{"type":"address","name":"t2","internalType":"address"},{"type":"uint8","name":"m2","internalType":"uint8"},{"type":"int128","name":"a2","internalType":"int128"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"int128[]","name":"","internalType":"int128[]"}],"name":"query3","inputs":[{"type":"address","name":"pool","internalType":"contract IPool"},{"type":"uint8","name":"method","internalType":"uint8"},{"type":"address","name":"t1","internalType":"address"},{"type":"uint8","name":"m1","internalType":"uint8"},{"type":"int128","name":"a1","internalType":"int128"},{"type":"address","name":"t2","internalType":"address"},{"type":"uint8","name":"m2","internalType":"uint8"},{"type":"int128","name":"a2","internalType":"int128"},{"type":"address","name":"t3","internalType":"address"},{"type":"uint8","name":"m3","internalType":"uint8"},{"type":"int128","name":"a3","internalType":"int128"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"amountA","internalType":"uint256"},{"type":"uint256","name":"amountB","internalType":"uint256"},{"type":"uint256","name":"liquidity","internalType":"uint256"}],"name":"quoteAddLiquidity","inputs":[{"type":"address","name":"tokenA","internalType":"address"},{"type":"address","name":"tokenB","internalType":"address"},{"type":"bool","name":"stable","internalType":"bool"},{"type":"uint256","name":"amountADesired","internalType":"uint256"},{"type":"uint256","name":"amountBDesired","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"amountA","internalType":"uint256"},{"type":"uint256","name":"amountB","internalType":"uint256"}],"name":"quoteRemoveLiquidity","inputs":[{"type":"address","name":"tokenA","internalType":"address"},{"type":"address","name":"tokenB","internalType":"address"},{"type":"bool","name":"stable","internalType":"bool"},{"type":"uint256","name":"liquidity","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"amountA","internalType":"uint256"},{"type":"uint256","name":"amountB","internalType":"uint256"}],"name":"removeLiquidity","inputs":[{"type":"address","name":"tokenA","internalType":"address"},{"type":"address","name":"tokenB","internalType":"address"},{"type":"bool","name":"stable","internalType":"bool"},{"type":"uint256","name":"liquidity","internalType":"uint256"},{"type":"uint256","name":"amountAMin","internalType":"uint256"},{"type":"uint256","name":"amountBMin","internalType":"uint256"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"deadline","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"uint256","name":"","internalType":"uint256"},{"type":"uint256","name":"","internalType":"uint256"}],"name":"removeLiquidityETH","inputs":[{"type":"address","name":"token","internalType":"address"},{"type":"bool","name":"","internalType":"bool"},{"type":"uint256","name":"liquidity","internalType":"uint256"},{"type":"uint256","name":"amountTokenMin","internalType":"uint256"},{"type":"uint256","name":"amountETHMin","internalType":"uint256"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"deadline","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"withdraw","inputs":[{"type":"address","name":"p","internalType":"address"},{"type":"uint256","name":"a","internalType":"uint256"}]}]
Contract Creation Code
0x60e0346100bc57601f6133f538819003918201601f19168301916001600160401b038311848410176100c15780849260409485528339810103126100bc578051906001600160a01b03821682036100bc5760200151906001600160a01b03821682036100bc5760c05260a0523060805260405161331d90816100d88239608051816113c4015260a05181818161080201528181610c7b0152818161117201528181611f2e01528181611fe8015261206b015260c05181610c240152f35b600080fd5b634e487b7160e01b600052604160045260246000fdfe6080604052600436101561001257600080fd5b60003560e01c80630dede6c4146101475780630ff4536e146101425780631a3498411461013d5780631e3dd18b146101385780632c406d23146101335780632c7f423d1461012e5780634386e63c1461012957806347e7ef2414610124578063574f2ba31461011f5780635a47ddc31461011a5780636801cc301461011557806385e630a61461011057806398a0fb3c1461010b578063b7e0d4c014610106578063c45a015514610101578063d7b0e0a5146100fc578063e6dd4fb6146100f7578063f3fef3a3146100f25763fe888665146100ed57600080fd5b6113ae565b61137d565b611225565b6111a1565b61115c565b6110f1565b61101c565b610ec5565b610de7565b610cf2565b610c55565b610be0565b610b39565b610a50565b610885565b6107cc565b6106e2565b610467565b61017e565b6001600160a01b0381160361015d57565b600080fd5b359061016d8261014c565b565b60443590811515820361015d57565b3461015d5761010036600319011261015d5761024960043561019f8161014c565b806024356101ac8161014c565b6101b461016f565b90606435906102266102106102206102158261021a828261020a6084359b8a60a4359e61020560c4356101e68161014c565b6101fe60e4355b916001600160a01b031633146115cb565b4210611611565b61202d565b9a6121dd565b612244565b61165e565b986121dd565b936121dd565b93604051956102366020886102f7565b600087526001600160a01b038516611ac1565b8051156102a05761028861027661027061028161027b6102766102706020880151600f0b90565b600f0b90565b6122a7565b94611691565b51600f0b90565b604080519283526020830191909152819081015b0390f35b61167b565b359060ff8216820361015d57565b359081600f0b820361015d57565b634e487b7160e01b600052604160045260246000fd5b606081019081106001600160401b038211176102f257604052565b6102c1565b90601f801991011681019081106001600160401b038211176102f257604052565b81601f8201121561015d578035906001600160401b0382116102f2576040519261034c601f8401601f1916602001856102f7565b8284526020838301011161015d57816000926020809301838601378301015290565b9061018060031983011261015d576004356103888161014c565b9160243560ff8116810361015d57916103a16044610162565b916103ac60646102a5565b916103b760846102b3565b916103c260a4610162565b916103cd60c46102a5565b916103d860e46102b3565b916103e4610104610162565b916103f06101246102a5565b916103fc6101446102b3565b9161016435906001600160401b03821161015d5761041c91600401610318565b90565b906020808351928381520192019060005b81811061043d5750505090565b8251600f0b845260209384019390920191600101610430565b90602061041c92818152019061041f565b3461015d5761029c61060a61047b3661036e565b9260009b91999b9a929895969a97949790610494611719565b9b8c61049e61173b565b9e6001600160a01b0316806106555750508c6104c86000805160206132a8833981519152916116a1565b526001600160a01b03168061063c57506000805160206132a88339815191525b6104f18d611691565b526001600160a01b0316806106165750506000805160206132a88339815191525b61051b8b6116ae565b5260f89190911b6001600160f81b0319166001600160a01b0391909116176105428a6116a1565b515261054c611719565b60206105578b6116a1565b51015260406105658a6116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617610597602061058f896116a1565b5101516116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b176105c960206105c1876116a1565b510151611691565b5260f01b60ff60f01b166001600160801b0390911617600160f91b176105fb60206105f3856116a1565b5101516116ae565b52610604611719565b90612423565b60405191829182610456565b610637915061062b906001600160a01b031681565b6001600160a01b031690565b610512565b6106509061062b906001600160a01b031681565b6104e8565b6104c89061066d9061062b906001600160a01b031681565b916116a1565b9060c060031983011261015d5760043561068c8161014c565b9160243560ff8116810361015d57916044356106a78161014c565b9160643560ff8116810361015d579160843580600f0b810361015d579160a435906001600160401b03821161015d5761041c91600401610318565b61029c61060a6106f136610673565b90919294936106fe6116d5565b9461070761173b565b966001600160a01b0316806107b357506000805160206132a88339815191525b610730876116a1565b5260f89190911b6001600160f81b0319166001600160a01b039190911617610757866116a1565b51526107616116d5565b602061076c876116a1565b510152604061077a866116a1565b51015260f09190911b60ff60f01b166001600160801b0391909116176107a4602061058f856116a1565b526107ad6116d5565b906124c6565b6107c79061062b906001600160a01b031681565b610727565b3461015d57602036600319011261015d57604051632a48235b60e01b815260048035908201526020816024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa80156108805761029c91600091610851575b506040516001600160a01b0390911681529081906020820190565b610873915060203d602011610879575b61086b81836102f7565b810190611aa0565b38610836565b503d610861565b611ab5565b61029c61060a6108943661036e565b9260009b91999b9a929895969a979497906108ad611719565b9b8c6108b761173b565b9e6001600160a01b031680610a385750508c6108e16000805160206132a8833981519152916116a1565b526001600160a01b031680610a1f57506000805160206132a88339815191525b61090a8d611691565b526001600160a01b031680610a055750506000805160206132a88339815191525b6109348b6116ae565b5260f89190911b6001600160f81b0319166001600160a01b03919091161761095b8a6116a1565b5152610965611719565b60206109708b6116a1565b510152604061097e8a6116a1565b51015260f09190911b60ff60f01b166001600160801b0391909116176109a8602061058f896116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b176109d260206105c1876116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f91b176109fc60206105f3856116a1565b526107ad611719565b610a1a915061062b906001600160a01b031681565b61092b565b610a339061062b906001600160a01b031681565b610901565b6108e19061066d9061062b906001600160a01b031681565b3461015d5761029c61060a610a6436610673565b9091929493610a716116d5565b94610a7a61173b565b966001600160a01b031680610b2057506000805160206132a88339815191525b610aa3876116a1565b5260f89190911b6001600160f81b0319166001600160a01b039190911617610aca866116a1565b5152610ad46116d5565b6020610adf876116a1565b5101526040610aed866116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617610b17602061058f856116a1565b526106046116d5565b610b349061062b906001600160a01b031681565b610a9a565b3461015d57608036600319011261015d57610baa600435610b598161014c565b602435610b658161014c565b610b6d61016f565b610b87610210610b8160643593858761202d565b926121dd565b9160405193610b976020866102f7565b600085526001600160a01b0383166117cc565b8051156102a057610bc16020820151600f0b6122a7565b908051600110156102a0576102766102706040610288930151600f0b90565b3461015d57604036600319011261015d57610c53600435610c008161014c565b610c0e6102106024356121dd565b9060405191610c1e6020846102f7565b600083527f0000000000000000000000000000000000000000000000000000000000000000916001600160a01b0381166120db565b005b3461015d57600036600319011261015d5760405163138b573360e11b81526020816004817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa801561088057600090610cbe575b604051908152602090f35b506020813d602011610cea575b81610cd8602093836102f7565b8101031261015d5761029c9051610cb3565b3d9150610ccb565b61012036600319011261015d57610d82600435610d0e8161014c565b602435610d1a8161014c565b610d2261016f565b60643591610d5f61021061022081610d5960843596610d5260e435610d468161014c565b6101fe610104356101ed565b868a61202d565b966121dd565b9160405194610d6f6020876102f7565b600086526001600160a01b038516611c34565b8051156102a057610da06102766102706102156020850151600f0b90565b61029c610dca610276610270610281610dc46102766102706102156102818b611691565b966116ae565b604051938493846040919493926060820195825260208201520152565b3461015d57606036600319011261015d576020610e23600435610e098161014c565b602435610e158161014c565b610e1d61016f565b9161202d565b6040516001600160a01b039091168152f35b61012060031982011261015d57600435610e4e8161014c565b9160243560ff8116810361015d5791604435610e698161014c565b9160643560ff8116810361015d5791610e8260846102b3565b9160a435610e8f8161014c565b91610e9a60c46102a5565b91610ea560e46102b3565b9161010435906001600160401b03821161015d5761041c91600401610318565b61029c61060a610ed436610e35565b91949392969095976000610ee66116f7565b98610eef61173b565b9a6001600160a01b03168061100357506000805160206132a88339815191525b610f188b6116a1565b526001600160a01b031680610fe95750506000805160206132a88339815191525b610f4289611691565b5260f89190911b6001600160f81b0319166001600160a01b039190911617610f69886116a1565b5152610f736116f7565b6020610f7e896116a1565b5101526040610f8c886116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617610fb6602061058f876116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b17610fe060206105c1856116a1565b526107ad6116f7565b610ffe915061062b906001600160a01b031681565b610f39565b6110179061062b906001600160a01b031681565b610f0f565b3461015d5760a036600319011261015d5761108f60043561103c8161014c565b6024356110488161014c565b61105061016f565b6064359161106c61021061022081610d5960843596868a61202d565b916040519461107c6020876102f7565b600086526001600160a01b038516611935565b8051156102a057610da06102766102706020840151600f0b61165e565b60e090600319011261015d576004356110c48161014c565b90602435801515810361015d579060443590606435906084359060a4356110ea8161014c565b9060c43590565b610d826101fe61112761112d610210610b8161110c366110ac565b959a939994959392506001600160a01b0316331490506115cb565b85611eeb565b611139610210346121dd565b90604051936111496020866102f7565b600085526001600160a01b038416611d9f565b3461015d57600036600319011261015d576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b3461015d576102496111d56101fe6111b8366110ac565b959791969295939450909291906001600160a01b031633146115cb565b611202610210610b816102156102106111fc6102156102106111f68c611fa8565b996121dd565b976121dd565b92604051946112126020876102f7565b600086526001600160a01b038416611e45565b3461015d5761029c61060a61123936610e35565b91949392969095976112496116f7565b9761125261173b565b996001600160a01b03168061136457506000805160206132a88339815191525b61127b8a6116a1565b526001600160a01b03168061134b57506000805160206132a88339815191525b6112a489611691565b5260f89190911b6001600160f81b0319166001600160a01b0391909116176112cb886116a1565b51526112d56116f7565b60206112e0896116a1565b51015260406112ee886116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617611318602061058f876116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b1761134260206105c1856116a1565b526106046116f7565b61135f9061062b906001600160a01b031681565b61129b565b6113789061062b906001600160a01b031681565b611272565b3461015d57604036600319011261015d57610c5360043561139d8161014c565b610c0e6102156102106024356121dd565b3461015d57600036600319011261015d57610c537f00000000000000000000000000000000000000000000000000000000000000006113f3635a47ddc360e01b6130a6565b506113fc612523565b9061141a8361140a846116a1565b516001600160a01b039091169052565b60006020611427846116a1565b5101526114326116d5565b604061143d846116a1565b510152611469635a47ddc360e01b611459604061058f866116a1565b6001600160e01b03199091169052565b6001600160a01b0381161515806115b0575b6001600160a01b038416159260008051602061328883398151915290859085611595575b6114ae60405192839283612582565b0390a183635a47ddc31955611564575b5015611520576114e3635a47ddc360e01b6000805160206132c883398151915261313b565b505b6114ee816126a1565b6114f781612812565b61150081612980565b61150981612aee565b61151281612c5c565b61151b81612dca565b612f38565b61155e6000805160206132c8833981519152611543635a47ddc360e01b826131f6565b50611559836002635a47ddc360e01b930161268a565b6131f6565b506114e5565b61158e90635a47ddc360e01b906115899060008051602061326883398151915261268a565b61313b565b50386114be565b6115ab60206115a3836116a1565b510160029052565b61149f565b6115c660206115be856116a1565b510160019052565b61147b565b156115d257565b60405162461bcd60e51b815260206004820152601760248201527613ba37939036bab9ba1031329036b9b39739b2b73232b960491b6044820152606490fd5b1561161857565b60405162461bcd60e51b8152602060048201526008602482015267646561646c696e6560c01b6044820152606490fd5b634e487b7160e01b600052601160045260246000fd5b600f0b60016001607f1b031981146116765760000390565b611648565b634e487b7160e01b600052603260045260246000fd5b8051600110156102a05760400190565b8051156102a05760200190565b8051600210156102a05760600190565b6001600160401b0381116102f25760051b60200190565b604080519091906116e683826102f7565b6001815291601f1901366020840137565b6040516060919061170883826102f7565b6002815291601f1901366020840137565b6040516080919061172a83826102f7565b6003815291601f1901366020840137565b60408051919061174b90836102f7565b6001825281601f1961175d60016116be565b019060005b82811061176e57505050565b60209060405161177d816102d7565b600081526060838201526060604082015282828501015201611762565b906117a4826116be565b6117b160405191826102f7565b82815280926117c2601f19916116be565b0190602036910137565b61041c95919492936117dc611719565b946117e561173b565b966001600160a01b03168061191c57506000805160206132a88339815191525b61180e876116a1565b526001600160a01b03168061190357506000805160206132a88339815191525b61183786611691565b526001600160a01b0316806118ea57506000805160206132a88339815191525b611860856116ae565b526001600160a01b0316611873856116a1565b515261187d611719565b6020611888866116a1565b5101526040611896856116a1565b51015260016001607f1b036118af602061058f866116a1565b5260016001607f1b03600160f81b016118cc60206105c1866116a1565b526001600160801b0316600160f91b176105fb60206105f3856116a1565b6118fe9061062b906001600160a01b031681565b611857565b6119179061062b906001600160a01b031681565b61182e565b6119309061062b906001600160a01b031681565b611805565b61041c969195949394611946611719565b9561194f61173b565b976001600160a01b031680611a8757506000805160206132a88339815191525b611978886116a1565b526001600160a01b031680611a6e57506000805160206132a88339815191525b6119a187611691565b526001600160a01b031680611a5557506000805160206132a88339815191525b6119ca866116ae565b526001600160a01b03166119dd866116a1565b51526119e7611719565b60206119f2876116a1565b5101526040611a00866116a1565b5101526001600160801b0316611a1a602061058f866116a1565b526001600160801b0316600160f81b17611a3860206105c1856116a1565b5260016001607f1b03600160f91b016105fb60206105f3856116a1565b611a699061062b906001600160a01b031681565b6119c1565b611a829061062b906001600160a01b031681565b611998565b611a9b9061062b906001600160a01b031681565b61196f565b9081602091031261015d575161041c8161014c565b6040513d6000823e3d90fd5b61041c979196949395611ad2611719565b96611adb61173b565b986001600160a01b031680611c1b57506000805160206132a88339815191525b611b04896116a1565b526001600160a01b031680611c0257506000805160206132a88339815191525b611b2d88611691565b526001600160a01b031680611be957506000805160206132a88339815191525b611b56876116ae565b526001600160a01b0316611b69876116a1565b5152611b73611719565b6020611b7e886116a1565b5101526040611b8c876116a1565b5101526001600160801b0316600160f01b17611bac602061058f876116a1565b526001600160801b031661010160f01b17611bcb60206105c1866116a1565b526001600160801b0316600160f91b176109fc60206105f3856116a1565b611bfd9061062b906001600160a01b031681565b611b4d565b611c169061062b906001600160a01b031681565b611b24565b611c2f9061062b906001600160a01b031681565b611afb565b61041c969195949394611c45611719565b95611c4e61173b565b976001600160a01b031680611d8657506000805160206132a88339815191525b611c77886116a1565b526001600160a01b031680611d6d57506000805160206132a88339815191525b611ca087611691565b526001600160a01b031680611d5457506000805160206132a88339815191525b611cc9866116ae565b526001600160a01b0316611cdc866116a1565b5152611ce6611719565b6020611cf1876116a1565b5101526040611cff866116a1565b5101526001600160801b0316611d19602061058f866116a1565b526001600160801b0316600160f81b17611d3760206105c1856116a1565b5260016001607f1b03600160f91b016109fc60206105f3856116a1565b611d689061062b906001600160a01b031681565b611cc0565b611d819061062b906001600160a01b031681565b611c97565b611d9a9061062b906001600160a01b031681565b611c6e565b9461041c959493929194611db1611719565b94611dba61173b565b966001600160a01b031680611e2c57506000805160206132a88339815191525b611de3876116a1565b526000805160206132a88339815191529081611dfe88611691565b526001600160a01b031680611e175750611cc9866116ae565b611d68915061062b906001600160a01b031681565b611e409061062b906001600160a01b031681565b611dda565b9561041c969593929195611e57611719565b95611e6061173b565b976001600160a01b031680611ed257506000805160206132a88339815191525b611e89886116a1565b526000805160206132a88339815191529081611ea489611691565b526001600160a01b031680611ebd5750611b56876116ae565b611bfd915061062b906001600160a01b031681565b611ee69061062b906001600160a01b031681565b611e80565b6001600160a01b031690508015611f93575b6040516308311f8f60e21b815260048101919091526000805160206132a883398151915260248201526020816044817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa90811561088057600091611f74575b506001600160a01b031690565b611f8d915060203d6020116108795761086b81836102f7565b38611f67565b506000805160206132a8833981519152611efd565b6001600160a01b03168015611f93576040516308311f8f60e21b815260048101919091526000805160206132a883398151915260248201526020816044817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa90811561088057600091611f7457506001600160a01b031690565b6001600160a01b0390811692501681156120c5575b80156120b0575b6040516308311f8f60e21b8152600481019290925260248201526020816044817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa90811561088057600091611f7457506001600160a01b031690565b506000805160206132a8833981519152612049565b6000805160206132a88339815191529150612042565b9361041c94939291936120ec6116f7565b936120f561173b565b956001600160a01b0316806121c457506000805160206132a88339815191525b61211e866116a1565b526001600160a01b0316806121ab57506000805160206132a88339815191525b61214785611691565b526001600160a01b031661215a856116a1565b51526121646116f7565b602061216f866116a1565b510152604061217d856116a1565b5101526001600160801b0316612197602061058f856116a1565b52600160f81b610fe060206105c1856116a1565b6121bf9061062b906001600160a01b031681565b61213e565b6121d89061062b906001600160a01b031681565b612115565b6001600160ff1b0381116121ee5790565b60405162461bcd60e51b815260206004820152602860248201527f53616665436173743a2076616c756520646f65736e27742066697420696e2061604482015267371034b73a191a9b60c11b6064820152608490fd5b9081600f0b91820361225257565b60405162461bcd60e51b815260206004820152602760248201527f53616665436173743a2076616c756520646f65736e27742066697420696e20316044820152663238206269747360c81b6064820152608490fd5b600081126122b25790565b606460405162461bcd60e51b815260206004820152602060248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152fd5b906020808351928381520192019060005b8181106123145750505090565b8251845260209384019390920191600101612307565b9080602083519283815201916020808260051b8401019401926000925b82841061235657505050505090565b9091929394601f198282030183528551906060810191805182526020810151926060602084015283518091526020608084019401906000905b8082106123f5575050506040015190604081840391015280519081835260005b8281106123e057505060208083836000838096600198010152601f8019910116010197019301940192919390612347565b806020809284010151828287010152016123af565b9091946020806001928851815201960192019061238f565b908160051b918083046020149015171561167657565b929160006124869261249482936040519586916124746020840195637a97f8cf60e01b87523360248601526080604486015261246260a486018d6122f6565b8581036023190160648701529061041f565b8381036023190160848501529061232a565b03601f1981018652856102f7565b6124a86124a1875161179a565b965161240d565b935190305af4156124bc576020016020833e565b3d6000803e3d6000fd5b929160006124869261249482936040519586916125116020840195636988ad4560e11b8752606060248601526124ff608486018d6122f6565b8581036023190160448701529061041f565b8381036023190160648501529061232a565b60408051919061253390836102f7565b6001825281601f1961254560016116be565b019060005b82811061255657505050565b602090604051612565816102d7565b60008152600083820152606060408201528282850101520161254a565b929192606081016060825282518091526080820190602060808260051b8501019401916000905b8282106125dd575050506001600160a01b03909416602082015291925061041c916040818303910152602090600081520190565b848603607f19018152835180516001600160a01b03168752602081015194969394929391926060830191600382101561267457604060809160209384870152015193606060408201528451809452019201906000905b808210612651575050506020806001929701920192019092916125a9565b82516001600160e01b031916845260209384019390920191600190910190612633565b634e487b7160e01b600052602160045260246000fd5b9060018060a01b0316600052602052604060002090565b6126b16302df835360e61b6130a6565b506126ba612523565b906126c88361140a846116a1565b600060206126d5846116a1565b5101526126e06116d5565b60406126eb846116a1565b5101526127076302df835360e61b611459604061058f866116a1565b6001600160a01b0381161515806127ff575b6001600160a01b0384161592600080516020613288833981519152908590856127ec575b61274c60405192839283612582565b0390a18363b7e0d4c019556127c0575b501561278557506127826302df835360e61b6000805160206132c883398151915261313b565b50565b612782906000805160206132c883398151915290611559906127ae6302df835360e61b846131f6565b506302df835360e61b9260020161268a565b6127e5906302df835360e61b906115899060008051602061326883398151915261268a565b503861275c565b6127fa60206115a3836116a1565b61273d565b61280d60206115be856116a1565b612719565b6128226326283ecf60e21b6130a6565b5061282b612523565b906128398361140a846116a1565b60006020612846846116a1565b5101526128516116d5565b604061285c846116a1565b5101526128786326283ecf60e21b611459604061058f866116a1565b6001600160a01b03811615158061296d575b6001600160a01b03841615926000805160206132888339815191529085908561295a575b6128bd60405192839283612582565b0390a1836398a0fb3c195561292e575b50156128f357506127826326283ecf60e21b6000805160206132c883398151915261313b565b612782906000805160206132c8833981519152906115599061291c6326283ecf60e21b846131f6565b506326283ecf60e21b9260020161268a565b612953906326283ecf60e21b906115899060008051602061326883398151915261268a565b50386128cd565b61296860206115a3836116a1565b6128ae565b61297b60206115be856116a1565b61288a565b61299063037b79b160e21b6130a6565b50612999612523565b906129a78361140a846116a1565b600060206129b4846116a1565b5101526129bf6116d5565b60406129ca846116a1565b5101526129e663037b79b160e21b611459604061058f866116a1565b6001600160a01b038116151580612adb575b6001600160a01b038416159260008051602061328883398151915290859085612ac8575b612a2b60405192839283612582565b0390a183630dede6c41955612a9c575b5015612a61575061278263037b79b160e21b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612a8a63037b79b160e21b846131f6565b5063037b79b160e21b9260020161268a565b612ac19063037b79b160e21b906115899060008051602061326883398151915261268a565b5038612a3b565b612ad660206115a3836116a1565b612a1c565b612ae960206115be856116a1565b6129f8565b612afe63d7b0e0a560e01b6130a6565b50612b07612523565b90612b158361140a846116a1565b60006020612b22846116a1565b510152612b2d6116d5565b6040612b38846116a1565b510152612b5463d7b0e0a560e01b611459604061058f866116a1565b6001600160a01b038116151580612c49575b6001600160a01b038416159260008051602061328883398151915290859085612c36575b612b9960405192839283612582565b0390a18363d7b0e0a51955612c0a575b5015612bcf575061278263d7b0e0a560e01b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612bf863d7b0e0a560e01b846131f6565b5063d7b0e0a560e01b9260020161268a565b612c2f9063d7b0e0a560e01b906115899060008051602061326883398151915261268a565b5038612ba9565b612c4460206115a3836116a1565b612b8a565b612c5760206115be856116a1565b612b66565b612c6c6310e1b98f60e21b6130a6565b50612c75612523565b90612c838361140a846116a1565b60006020612c90846116a1565b510152612c9b6116d5565b6040612ca6846116a1565b510152612cc26310e1b98f60e21b611459604061058f866116a1565b6001600160a01b038116151580612db7575b6001600160a01b038416159260008051602061328883398151915290859085612da4575b612d0760405192839283612582565b0390a183634386e63c1955612d78575b5015612d3d57506127826310e1b98f60e21b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612d666310e1b98f60e21b846131f6565b506310e1b98f60e21b9260020161268a565b612d9d906310e1b98f60e21b906115899060008051602061326883398151915261268a565b5038612d17565b612db260206115a3836116a1565b612cf8565b612dc560206115be856116a1565b612cd4565b612dda6311f9fbc960e21b6130a6565b50612de3612523565b90612df18361140a846116a1565b60006020612dfe846116a1565b510152612e096116d5565b6040612e14846116a1565b510152612e306311f9fbc960e21b611459604061058f866116a1565b6001600160a01b038116151580612f25575b6001600160a01b038416159260008051602061328883398151915290859085612f12575b612e7560405192839283612582565b0390a1836347e7ef241955612ee6575b5015612eab57506127826311f9fbc960e21b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612ed46311f9fbc960e21b846131f6565b506311f9fbc960e21b9260020161268a565b612f0b906311f9fbc960e21b906115899060008051602061326883398151915261268a565b5038612e85565b612f2060206115a3836116a1565b612e66565b612f3360206115be856116a1565b612e42565b612f4863f3fef3a360e01b6130a6565b50612f51612523565b90612f5f8361140a846116a1565b60006020612f6c846116a1565b510152612f776116d5565b6040612f82846116a1565b510152612f9e63f3fef3a360e01b611459604061058f866116a1565b6001600160a01b038116151580613093575b6001600160a01b038416159260008051602061328883398151915290859085613080575b612fe360405192839283612582565b0390a18363f3fef3a31955613054575b5015613019575061278263f3fef3a360e01b6000805160206132c883398151915261313b565b612782906000805160206132c8833981519152906115599061304263f3fef3a360e01b846131f6565b5063f3fef3a360e01b9260020161268a565b6130799063f3fef3a360e01b906115899060008051602061326883398151915261268a565b5038612ff3565b61308e60206115a3836116a1565b612fd4565b6130a160206115be856116a1565b612fb0565b60e01c195490600090600160a01b8310156130bd57565b91199160019150565b80548210156102a05760005260206000200190600090565b916130f89183549060031b91821b91600019901b19161790565b9055565b8054801561312557600019019061311382826130c6565b8154906000199060031b1b1916905555565b634e487b7160e01b600052603160045260246000fd5b60018101918060005282602052604060002054928315156000146131ed57600019840184811161167657835460001981019490851161167657600095858361318f9461319e98036131a4575b5050506130fc565b90600052602052604060002090565b55600190565b6131d46131ce916131c56131bb6131e495886130c6565b90549060031b1c90565b928391876130c6565b906130de565b8590600052602052604060002090565b55388080613187565b50505050600090565b600181019082600052816020526040600020541560001461325f578054600160401b8110156102f25761324a6132338260018794018555846130c6565b819391549060031b91821b91600019901b19161790565b90555491600052602052604060002055600190565b50505060009056fe643b8a6b3ed8752748bc6461fd4a02b0c30db5660ff05b0028ccebefb6b5f2638faa70878671ccd212d20771b795c50af8fd3ff6cf27f4bde57e5d4de0aeb673000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee643b8a6b3ed8752748bc6461fd4a02b0c30db5660ff05b0028ccebefb6b5f261a2646970667358221220a2278e54aef0c34bda04945ef8b555ab45afb1a18f006ecd637742776e36dc3d64736f6c634300081c003300000000000000000000000096d52c0b499c1c95b9748f7e31a5b0018c1979d40000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f
Deployed ByteCode
0x6080604052600436101561001257600080fd5b60003560e01c80630dede6c4146101475780630ff4536e146101425780631a3498411461013d5780631e3dd18b146101385780632c406d23146101335780632c7f423d1461012e5780634386e63c1461012957806347e7ef2414610124578063574f2ba31461011f5780635a47ddc31461011a5780636801cc301461011557806385e630a61461011057806398a0fb3c1461010b578063b7e0d4c014610106578063c45a015514610101578063d7b0e0a5146100fc578063e6dd4fb6146100f7578063f3fef3a3146100f25763fe888665146100ed57600080fd5b6113ae565b61137d565b611225565b6111a1565b61115c565b6110f1565b61101c565b610ec5565b610de7565b610cf2565b610c55565b610be0565b610b39565b610a50565b610885565b6107cc565b6106e2565b610467565b61017e565b6001600160a01b0381160361015d57565b600080fd5b359061016d8261014c565b565b60443590811515820361015d57565b3461015d5761010036600319011261015d5761024960043561019f8161014c565b806024356101ac8161014c565b6101b461016f565b90606435906102266102106102206102158261021a828261020a6084359b8a60a4359e61020560c4356101e68161014c565b6101fe60e4355b916001600160a01b031633146115cb565b4210611611565b61202d565b9a6121dd565b612244565b61165e565b986121dd565b936121dd565b93604051956102366020886102f7565b600087526001600160a01b038516611ac1565b8051156102a05761028861027661027061028161027b6102766102706020880151600f0b90565b600f0b90565b6122a7565b94611691565b51600f0b90565b604080519283526020830191909152819081015b0390f35b61167b565b359060ff8216820361015d57565b359081600f0b820361015d57565b634e487b7160e01b600052604160045260246000fd5b606081019081106001600160401b038211176102f257604052565b6102c1565b90601f801991011681019081106001600160401b038211176102f257604052565b81601f8201121561015d578035906001600160401b0382116102f2576040519261034c601f8401601f1916602001856102f7565b8284526020838301011161015d57816000926020809301838601378301015290565b9061018060031983011261015d576004356103888161014c565b9160243560ff8116810361015d57916103a16044610162565b916103ac60646102a5565b916103b760846102b3565b916103c260a4610162565b916103cd60c46102a5565b916103d860e46102b3565b916103e4610104610162565b916103f06101246102a5565b916103fc6101446102b3565b9161016435906001600160401b03821161015d5761041c91600401610318565b90565b906020808351928381520192019060005b81811061043d5750505090565b8251600f0b845260209384019390920191600101610430565b90602061041c92818152019061041f565b3461015d5761029c61060a61047b3661036e565b9260009b91999b9a929895969a97949790610494611719565b9b8c61049e61173b565b9e6001600160a01b0316806106555750508c6104c86000805160206132a8833981519152916116a1565b526001600160a01b03168061063c57506000805160206132a88339815191525b6104f18d611691565b526001600160a01b0316806106165750506000805160206132a88339815191525b61051b8b6116ae565b5260f89190911b6001600160f81b0319166001600160a01b0391909116176105428a6116a1565b515261054c611719565b60206105578b6116a1565b51015260406105658a6116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617610597602061058f896116a1565b5101516116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b176105c960206105c1876116a1565b510151611691565b5260f01b60ff60f01b166001600160801b0390911617600160f91b176105fb60206105f3856116a1565b5101516116ae565b52610604611719565b90612423565b60405191829182610456565b610637915061062b906001600160a01b031681565b6001600160a01b031690565b610512565b6106509061062b906001600160a01b031681565b6104e8565b6104c89061066d9061062b906001600160a01b031681565b916116a1565b9060c060031983011261015d5760043561068c8161014c565b9160243560ff8116810361015d57916044356106a78161014c565b9160643560ff8116810361015d579160843580600f0b810361015d579160a435906001600160401b03821161015d5761041c91600401610318565b61029c61060a6106f136610673565b90919294936106fe6116d5565b9461070761173b565b966001600160a01b0316806107b357506000805160206132a88339815191525b610730876116a1565b5260f89190911b6001600160f81b0319166001600160a01b039190911617610757866116a1565b51526107616116d5565b602061076c876116a1565b510152604061077a866116a1565b51015260f09190911b60ff60f01b166001600160801b0391909116176107a4602061058f856116a1565b526107ad6116d5565b906124c6565b6107c79061062b906001600160a01b031681565b610727565b3461015d57602036600319011261015d57604051632a48235b60e01b815260048035908201526020816024816001600160a01b037f0000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f165afa80156108805761029c91600091610851575b506040516001600160a01b0390911681529081906020820190565b610873915060203d602011610879575b61086b81836102f7565b810190611aa0565b38610836565b503d610861565b611ab5565b61029c61060a6108943661036e565b9260009b91999b9a929895969a979497906108ad611719565b9b8c6108b761173b565b9e6001600160a01b031680610a385750508c6108e16000805160206132a8833981519152916116a1565b526001600160a01b031680610a1f57506000805160206132a88339815191525b61090a8d611691565b526001600160a01b031680610a055750506000805160206132a88339815191525b6109348b6116ae565b5260f89190911b6001600160f81b0319166001600160a01b03919091161761095b8a6116a1565b5152610965611719565b60206109708b6116a1565b510152604061097e8a6116a1565b51015260f09190911b60ff60f01b166001600160801b0391909116176109a8602061058f896116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b176109d260206105c1876116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f91b176109fc60206105f3856116a1565b526107ad611719565b610a1a915061062b906001600160a01b031681565b61092b565b610a339061062b906001600160a01b031681565b610901565b6108e19061066d9061062b906001600160a01b031681565b3461015d5761029c61060a610a6436610673565b9091929493610a716116d5565b94610a7a61173b565b966001600160a01b031680610b2057506000805160206132a88339815191525b610aa3876116a1565b5260f89190911b6001600160f81b0319166001600160a01b039190911617610aca866116a1565b5152610ad46116d5565b6020610adf876116a1565b5101526040610aed866116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617610b17602061058f856116a1565b526106046116d5565b610b349061062b906001600160a01b031681565b610a9a565b3461015d57608036600319011261015d57610baa600435610b598161014c565b602435610b658161014c565b610b6d61016f565b610b87610210610b8160643593858761202d565b926121dd565b9160405193610b976020866102f7565b600085526001600160a01b0383166117cc565b8051156102a057610bc16020820151600f0b6122a7565b908051600110156102a0576102766102706040610288930151600f0b90565b3461015d57604036600319011261015d57610c53600435610c008161014c565b610c0e6102106024356121dd565b9060405191610c1e6020846102f7565b600083527f00000000000000000000000096d52c0b499c1c95b9748f7e31a5b0018c1979d4916001600160a01b0381166120db565b005b3461015d57600036600319011261015d5760405163138b573360e11b81526020816004817f0000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f6001600160a01b03165afa801561088057600090610cbe575b604051908152602090f35b506020813d602011610cea575b81610cd8602093836102f7565b8101031261015d5761029c9051610cb3565b3d9150610ccb565b61012036600319011261015d57610d82600435610d0e8161014c565b602435610d1a8161014c565b610d2261016f565b60643591610d5f61021061022081610d5960843596610d5260e435610d468161014c565b6101fe610104356101ed565b868a61202d565b966121dd565b9160405194610d6f6020876102f7565b600086526001600160a01b038516611c34565b8051156102a057610da06102766102706102156020850151600f0b90565b61029c610dca610276610270610281610dc46102766102706102156102818b611691565b966116ae565b604051938493846040919493926060820195825260208201520152565b3461015d57606036600319011261015d576020610e23600435610e098161014c565b602435610e158161014c565b610e1d61016f565b9161202d565b6040516001600160a01b039091168152f35b61012060031982011261015d57600435610e4e8161014c565b9160243560ff8116810361015d5791604435610e698161014c565b9160643560ff8116810361015d5791610e8260846102b3565b9160a435610e8f8161014c565b91610e9a60c46102a5565b91610ea560e46102b3565b9161010435906001600160401b03821161015d5761041c91600401610318565b61029c61060a610ed436610e35565b91949392969095976000610ee66116f7565b98610eef61173b565b9a6001600160a01b03168061100357506000805160206132a88339815191525b610f188b6116a1565b526001600160a01b031680610fe95750506000805160206132a88339815191525b610f4289611691565b5260f89190911b6001600160f81b0319166001600160a01b039190911617610f69886116a1565b5152610f736116f7565b6020610f7e896116a1565b5101526040610f8c886116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617610fb6602061058f876116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b17610fe060206105c1856116a1565b526107ad6116f7565b610ffe915061062b906001600160a01b031681565b610f39565b6110179061062b906001600160a01b031681565b610f0f565b3461015d5760a036600319011261015d5761108f60043561103c8161014c565b6024356110488161014c565b61105061016f565b6064359161106c61021061022081610d5960843596868a61202d565b916040519461107c6020876102f7565b600086526001600160a01b038516611935565b8051156102a057610da06102766102706020840151600f0b61165e565b60e090600319011261015d576004356110c48161014c565b90602435801515810361015d579060443590606435906084359060a4356110ea8161014c565b9060c43590565b610d826101fe61112761112d610210610b8161110c366110ac565b959a939994959392506001600160a01b0316331490506115cb565b85611eeb565b611139610210346121dd565b90604051936111496020866102f7565b600085526001600160a01b038416611d9f565b3461015d57600036600319011261015d576040517f0000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f6001600160a01b03168152602090f35b3461015d576102496111d56101fe6111b8366110ac565b959791969295939450909291906001600160a01b031633146115cb565b611202610210610b816102156102106111fc6102156102106111f68c611fa8565b996121dd565b976121dd565b92604051946112126020876102f7565b600086526001600160a01b038416611e45565b3461015d5761029c61060a61123936610e35565b91949392969095976112496116f7565b9761125261173b565b996001600160a01b03168061136457506000805160206132a88339815191525b61127b8a6116a1565b526001600160a01b03168061134b57506000805160206132a88339815191525b6112a489611691565b5260f89190911b6001600160f81b0319166001600160a01b0391909116176112cb886116a1565b51526112d56116f7565b60206112e0896116a1565b51015260406112ee886116a1565b51015260f09190911b60ff60f01b166001600160801b039190911617611318602061058f876116a1565b5260f01b60ff60f01b166001600160801b0390911617600160f81b1761134260206105c1856116a1565b526106046116f7565b61135f9061062b906001600160a01b031681565b61129b565b6113789061062b906001600160a01b031681565b611272565b3461015d57604036600319011261015d57610c5360043561139d8161014c565b610c0e6102156102106024356121dd565b3461015d57600036600319011261015d57610c537f000000000000000000000000377ef4e5a71b2fcd18baf41c1d2725081330b0776113f3635a47ddc360e01b6130a6565b506113fc612523565b9061141a8361140a846116a1565b516001600160a01b039091169052565b60006020611427846116a1565b5101526114326116d5565b604061143d846116a1565b510152611469635a47ddc360e01b611459604061058f866116a1565b6001600160e01b03199091169052565b6001600160a01b0381161515806115b0575b6001600160a01b038416159260008051602061328883398151915290859085611595575b6114ae60405192839283612582565b0390a183635a47ddc31955611564575b5015611520576114e3635a47ddc360e01b6000805160206132c883398151915261313b565b505b6114ee816126a1565b6114f781612812565b61150081612980565b61150981612aee565b61151281612c5c565b61151b81612dca565b612f38565b61155e6000805160206132c8833981519152611543635a47ddc360e01b826131f6565b50611559836002635a47ddc360e01b930161268a565b6131f6565b506114e5565b61158e90635a47ddc360e01b906115899060008051602061326883398151915261268a565b61313b565b50386114be565b6115ab60206115a3836116a1565b510160029052565b61149f565b6115c660206115be856116a1565b510160019052565b61147b565b156115d257565b60405162461bcd60e51b815260206004820152601760248201527613ba37939036bab9ba1031329036b9b39739b2b73232b960491b6044820152606490fd5b1561161857565b60405162461bcd60e51b8152602060048201526008602482015267646561646c696e6560c01b6044820152606490fd5b634e487b7160e01b600052601160045260246000fd5b600f0b60016001607f1b031981146116765760000390565b611648565b634e487b7160e01b600052603260045260246000fd5b8051600110156102a05760400190565b8051156102a05760200190565b8051600210156102a05760600190565b6001600160401b0381116102f25760051b60200190565b604080519091906116e683826102f7565b6001815291601f1901366020840137565b6040516060919061170883826102f7565b6002815291601f1901366020840137565b6040516080919061172a83826102f7565b6003815291601f1901366020840137565b60408051919061174b90836102f7565b6001825281601f1961175d60016116be565b019060005b82811061176e57505050565b60209060405161177d816102d7565b600081526060838201526060604082015282828501015201611762565b906117a4826116be565b6117b160405191826102f7565b82815280926117c2601f19916116be565b0190602036910137565b61041c95919492936117dc611719565b946117e561173b565b966001600160a01b03168061191c57506000805160206132a88339815191525b61180e876116a1565b526001600160a01b03168061190357506000805160206132a88339815191525b61183786611691565b526001600160a01b0316806118ea57506000805160206132a88339815191525b611860856116ae565b526001600160a01b0316611873856116a1565b515261187d611719565b6020611888866116a1565b5101526040611896856116a1565b51015260016001607f1b036118af602061058f866116a1565b5260016001607f1b03600160f81b016118cc60206105c1866116a1565b526001600160801b0316600160f91b176105fb60206105f3856116a1565b6118fe9061062b906001600160a01b031681565b611857565b6119179061062b906001600160a01b031681565b61182e565b6119309061062b906001600160a01b031681565b611805565b61041c969195949394611946611719565b9561194f61173b565b976001600160a01b031680611a8757506000805160206132a88339815191525b611978886116a1565b526001600160a01b031680611a6e57506000805160206132a88339815191525b6119a187611691565b526001600160a01b031680611a5557506000805160206132a88339815191525b6119ca866116ae565b526001600160a01b03166119dd866116a1565b51526119e7611719565b60206119f2876116a1565b5101526040611a00866116a1565b5101526001600160801b0316611a1a602061058f866116a1565b526001600160801b0316600160f81b17611a3860206105c1856116a1565b5260016001607f1b03600160f91b016105fb60206105f3856116a1565b611a699061062b906001600160a01b031681565b6119c1565b611a829061062b906001600160a01b031681565b611998565b611a9b9061062b906001600160a01b031681565b61196f565b9081602091031261015d575161041c8161014c565b6040513d6000823e3d90fd5b61041c979196949395611ad2611719565b96611adb61173b565b986001600160a01b031680611c1b57506000805160206132a88339815191525b611b04896116a1565b526001600160a01b031680611c0257506000805160206132a88339815191525b611b2d88611691565b526001600160a01b031680611be957506000805160206132a88339815191525b611b56876116ae565b526001600160a01b0316611b69876116a1565b5152611b73611719565b6020611b7e886116a1565b5101526040611b8c876116a1565b5101526001600160801b0316600160f01b17611bac602061058f876116a1565b526001600160801b031661010160f01b17611bcb60206105c1866116a1565b526001600160801b0316600160f91b176109fc60206105f3856116a1565b611bfd9061062b906001600160a01b031681565b611b4d565b611c169061062b906001600160a01b031681565b611b24565b611c2f9061062b906001600160a01b031681565b611afb565b61041c969195949394611c45611719565b95611c4e61173b565b976001600160a01b031680611d8657506000805160206132a88339815191525b611c77886116a1565b526001600160a01b031680611d6d57506000805160206132a88339815191525b611ca087611691565b526001600160a01b031680611d5457506000805160206132a88339815191525b611cc9866116ae565b526001600160a01b0316611cdc866116a1565b5152611ce6611719565b6020611cf1876116a1565b5101526040611cff866116a1565b5101526001600160801b0316611d19602061058f866116a1565b526001600160801b0316600160f81b17611d3760206105c1856116a1565b5260016001607f1b03600160f91b016109fc60206105f3856116a1565b611d689061062b906001600160a01b031681565b611cc0565b611d819061062b906001600160a01b031681565b611c97565b611d9a9061062b906001600160a01b031681565b611c6e565b9461041c959493929194611db1611719565b94611dba61173b565b966001600160a01b031680611e2c57506000805160206132a88339815191525b611de3876116a1565b526000805160206132a88339815191529081611dfe88611691565b526001600160a01b031680611e175750611cc9866116ae565b611d68915061062b906001600160a01b031681565b611e409061062b906001600160a01b031681565b611dda565b9561041c969593929195611e57611719565b95611e6061173b565b976001600160a01b031680611ed257506000805160206132a88339815191525b611e89886116a1565b526000805160206132a88339815191529081611ea489611691565b526001600160a01b031680611ebd5750611b56876116ae565b611bfd915061062b906001600160a01b031681565b611ee69061062b906001600160a01b031681565b611e80565b6001600160a01b031690508015611f93575b6040516308311f8f60e21b815260048101919091526000805160206132a883398151915260248201526020816044817f0000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f6001600160a01b03165afa90811561088057600091611f74575b506001600160a01b031690565b611f8d915060203d6020116108795761086b81836102f7565b38611f67565b506000805160206132a8833981519152611efd565b6001600160a01b03168015611f93576040516308311f8f60e21b815260048101919091526000805160206132a883398151915260248201526020816044817f0000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f6001600160a01b03165afa90811561088057600091611f7457506001600160a01b031690565b6001600160a01b0390811692501681156120c5575b80156120b0575b6040516308311f8f60e21b8152600481019290925260248201526020816044817f0000000000000000000000003b60e96efa9de4ca11b58fce393b441bb2e91a9f6001600160a01b03165afa90811561088057600091611f7457506001600160a01b031690565b506000805160206132a8833981519152612049565b6000805160206132a88339815191529150612042565b9361041c94939291936120ec6116f7565b936120f561173b565b956001600160a01b0316806121c457506000805160206132a88339815191525b61211e866116a1565b526001600160a01b0316806121ab57506000805160206132a88339815191525b61214785611691565b526001600160a01b031661215a856116a1565b51526121646116f7565b602061216f866116a1565b510152604061217d856116a1565b5101526001600160801b0316612197602061058f856116a1565b52600160f81b610fe060206105c1856116a1565b6121bf9061062b906001600160a01b031681565b61213e565b6121d89061062b906001600160a01b031681565b612115565b6001600160ff1b0381116121ee5790565b60405162461bcd60e51b815260206004820152602860248201527f53616665436173743a2076616c756520646f65736e27742066697420696e2061604482015267371034b73a191a9b60c11b6064820152608490fd5b9081600f0b91820361225257565b60405162461bcd60e51b815260206004820152602760248201527f53616665436173743a2076616c756520646f65736e27742066697420696e20316044820152663238206269747360c81b6064820152608490fd5b600081126122b25790565b606460405162461bcd60e51b815260206004820152602060248201527f53616665436173743a2076616c7565206d75737420626520706f7369746976656044820152fd5b906020808351928381520192019060005b8181106123145750505090565b8251845260209384019390920191600101612307565b9080602083519283815201916020808260051b8401019401926000925b82841061235657505050505090565b9091929394601f198282030183528551906060810191805182526020810151926060602084015283518091526020608084019401906000905b8082106123f5575050506040015190604081840391015280519081835260005b8281106123e057505060208083836000838096600198010152601f8019910116010197019301940192919390612347565b806020809284010151828287010152016123af565b9091946020806001928851815201960192019061238f565b908160051b918083046020149015171561167657565b929160006124869261249482936040519586916124746020840195637a97f8cf60e01b87523360248601526080604486015261246260a486018d6122f6565b8581036023190160648701529061041f565b8381036023190160848501529061232a565b03601f1981018652856102f7565b6124a86124a1875161179a565b965161240d565b935190305af4156124bc576020016020833e565b3d6000803e3d6000fd5b929160006124869261249482936040519586916125116020840195636988ad4560e11b8752606060248601526124ff608486018d6122f6565b8581036023190160448701529061041f565b8381036023190160648501529061232a565b60408051919061253390836102f7565b6001825281601f1961254560016116be565b019060005b82811061255657505050565b602090604051612565816102d7565b60008152600083820152606060408201528282850101520161254a565b929192606081016060825282518091526080820190602060808260051b8501019401916000905b8282106125dd575050506001600160a01b03909416602082015291925061041c916040818303910152602090600081520190565b848603607f19018152835180516001600160a01b03168752602081015194969394929391926060830191600382101561267457604060809160209384870152015193606060408201528451809452019201906000905b808210612651575050506020806001929701920192019092916125a9565b82516001600160e01b031916845260209384019390920191600190910190612633565b634e487b7160e01b600052602160045260246000fd5b9060018060a01b0316600052602052604060002090565b6126b16302df835360e61b6130a6565b506126ba612523565b906126c88361140a846116a1565b600060206126d5846116a1565b5101526126e06116d5565b60406126eb846116a1565b5101526127076302df835360e61b611459604061058f866116a1565b6001600160a01b0381161515806127ff575b6001600160a01b0384161592600080516020613288833981519152908590856127ec575b61274c60405192839283612582565b0390a18363b7e0d4c019556127c0575b501561278557506127826302df835360e61b6000805160206132c883398151915261313b565b50565b612782906000805160206132c883398151915290611559906127ae6302df835360e61b846131f6565b506302df835360e61b9260020161268a565b6127e5906302df835360e61b906115899060008051602061326883398151915261268a565b503861275c565b6127fa60206115a3836116a1565b61273d565b61280d60206115be856116a1565b612719565b6128226326283ecf60e21b6130a6565b5061282b612523565b906128398361140a846116a1565b60006020612846846116a1565b5101526128516116d5565b604061285c846116a1565b5101526128786326283ecf60e21b611459604061058f866116a1565b6001600160a01b03811615158061296d575b6001600160a01b03841615926000805160206132888339815191529085908561295a575b6128bd60405192839283612582565b0390a1836398a0fb3c195561292e575b50156128f357506127826326283ecf60e21b6000805160206132c883398151915261313b565b612782906000805160206132c8833981519152906115599061291c6326283ecf60e21b846131f6565b506326283ecf60e21b9260020161268a565b612953906326283ecf60e21b906115899060008051602061326883398151915261268a565b50386128cd565b61296860206115a3836116a1565b6128ae565b61297b60206115be856116a1565b61288a565b61299063037b79b160e21b6130a6565b50612999612523565b906129a78361140a846116a1565b600060206129b4846116a1565b5101526129bf6116d5565b60406129ca846116a1565b5101526129e663037b79b160e21b611459604061058f866116a1565b6001600160a01b038116151580612adb575b6001600160a01b038416159260008051602061328883398151915290859085612ac8575b612a2b60405192839283612582565b0390a183630dede6c41955612a9c575b5015612a61575061278263037b79b160e21b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612a8a63037b79b160e21b846131f6565b5063037b79b160e21b9260020161268a565b612ac19063037b79b160e21b906115899060008051602061326883398151915261268a565b5038612a3b565b612ad660206115a3836116a1565b612a1c565b612ae960206115be856116a1565b6129f8565b612afe63d7b0e0a560e01b6130a6565b50612b07612523565b90612b158361140a846116a1565b60006020612b22846116a1565b510152612b2d6116d5565b6040612b38846116a1565b510152612b5463d7b0e0a560e01b611459604061058f866116a1565b6001600160a01b038116151580612c49575b6001600160a01b038416159260008051602061328883398151915290859085612c36575b612b9960405192839283612582565b0390a18363d7b0e0a51955612c0a575b5015612bcf575061278263d7b0e0a560e01b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612bf863d7b0e0a560e01b846131f6565b5063d7b0e0a560e01b9260020161268a565b612c2f9063d7b0e0a560e01b906115899060008051602061326883398151915261268a565b5038612ba9565b612c4460206115a3836116a1565b612b8a565b612c5760206115be856116a1565b612b66565b612c6c6310e1b98f60e21b6130a6565b50612c75612523565b90612c838361140a846116a1565b60006020612c90846116a1565b510152612c9b6116d5565b6040612ca6846116a1565b510152612cc26310e1b98f60e21b611459604061058f866116a1565b6001600160a01b038116151580612db7575b6001600160a01b038416159260008051602061328883398151915290859085612da4575b612d0760405192839283612582565b0390a183634386e63c1955612d78575b5015612d3d57506127826310e1b98f60e21b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612d666310e1b98f60e21b846131f6565b506310e1b98f60e21b9260020161268a565b612d9d906310e1b98f60e21b906115899060008051602061326883398151915261268a565b5038612d17565b612db260206115a3836116a1565b612cf8565b612dc560206115be856116a1565b612cd4565b612dda6311f9fbc960e21b6130a6565b50612de3612523565b90612df18361140a846116a1565b60006020612dfe846116a1565b510152612e096116d5565b6040612e14846116a1565b510152612e306311f9fbc960e21b611459604061058f866116a1565b6001600160a01b038116151580612f25575b6001600160a01b038416159260008051602061328883398151915290859085612f12575b612e7560405192839283612582565b0390a1836347e7ef241955612ee6575b5015612eab57506127826311f9fbc960e21b6000805160206132c883398151915261313b565b612782906000805160206132c88339815191529061155990612ed46311f9fbc960e21b846131f6565b506311f9fbc960e21b9260020161268a565b612f0b906311f9fbc960e21b906115899060008051602061326883398151915261268a565b5038612e85565b612f2060206115a3836116a1565b612e66565b612f3360206115be856116a1565b612e42565b612f4863f3fef3a360e01b6130a6565b50612f51612523565b90612f5f8361140a846116a1565b60006020612f6c846116a1565b510152612f776116d5565b6040612f82846116a1565b510152612f9e63f3fef3a360e01b611459604061058f866116a1565b6001600160a01b038116151580613093575b6001600160a01b038416159260008051602061328883398151915290859085613080575b612fe360405192839283612582565b0390a18363f3fef3a31955613054575b5015613019575061278263f3fef3a360e01b6000805160206132c883398151915261313b565b612782906000805160206132c8833981519152906115599061304263f3fef3a360e01b846131f6565b5063f3fef3a360e01b9260020161268a565b6130799063f3fef3a360e01b906115899060008051602061326883398151915261268a565b5038612ff3565b61308e60206115a3836116a1565b612fd4565b6130a160206115be856116a1565b612fb0565b60e01c195490600090600160a01b8310156130bd57565b91199160019150565b80548210156102a05760005260206000200190600090565b916130f89183549060031b91821b91600019901b19161790565b9055565b8054801561312557600019019061311382826130c6565b8154906000199060031b1b1916905555565b634e487b7160e01b600052603160045260246000fd5b60018101918060005282602052604060002054928315156000146131ed57600019840184811161167657835460001981019490851161167657600095858361318f9461319e98036131a4575b5050506130fc565b90600052602052604060002090565b55600190565b6131d46131ce916131c56131bb6131e495886130c6565b90549060031b1c90565b928391876130c6565b906130de565b8590600052602052604060002090565b55388080613187565b50505050600090565b600181019082600052816020526040600020541560001461325f578054600160401b8110156102f25761324a6132338260018794018555846130c6565b819391549060031b91821b91600019901b19161790565b90555491600052602052604060002055600190565b50505060009056fe643b8a6b3ed8752748bc6461fd4a02b0c30db5660ff05b0028ccebefb6b5f2638faa70878671ccd212d20771b795c50af8fd3ff6cf27f4bde57e5d4de0aeb673000000000000000000000000eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee643b8a6b3ed8752748bc6461fd4a02b0c30db5660ff05b0028ccebefb6b5f261a2646970667358221220a2278e54aef0c34bda04945ef8b555ab45afb1a18f006ecd637742776e36dc3d64736f6c634300081c0033